

Figanzungsanleitung für DUC-MF MODBUS

Busfunktionalität über RS485 Schnittstellenkarte

Inhaltsverzeichnis

In	haltsve	erzeichnis	. 2
1	Einle	eitung	. 3
	1.1	Voraussetzungen für Modbus Nutzung	. 3
	1.2	Unterstützte Modbus Betriebsarten	
	1.3	Installationshinweise	. 4
2	Para	ametrierung des Messumformers	. 7
3	Mod	lbus Kommunikation Aufbau	. 8
	3.1	Modbus Abfrageregister Aufbau	. 8
	3.2	Modbus Master → Slave, Kommunikations-Beispiel	
4	Mod	lbus Registerübersicht1	
	4.1	Registerübersicht der Messgrößen – 1 Kanal Messumformer (Big Endian)
	für So	ftware-Version 1.XX.XX1	
	4.2	Registerübersicht der Messgrößen – 2 Kanal Messumformer (Big Endian)
	für So	ftware-Version 1.XX.XX1	
	4.3	Registerübersicht der Messgrößen – 1 Kanal Messumformer (Big Endian	
	für So	ftware-Version 2.XX.XX1	
	4.4	Registerübersicht der Messgrößen – 2 Kanal Messumformer (Big Endian	
	für So	ftware-Version 2.XX.XX1	13
	4.5	Volumenstrom Einheiten Registerübersicht	14
	4.6	Fließgeschwindigkeit Einheiten	
	•	erübersicht1	
	4.7	Mengenzähler Einheiten Registerübersicht	
	4.8	Wärmeleistung / Wärmemenge Einheiten Registerübersicht	
	4.9	Temperatur Einheiten Registerübersicht	
	4.10	Statusmeldungen Registerübersicht	
5	Ents	sorgung1	18

Die Bedienungsanleitungen auf unserer Website www.kobold.com entsprechen immer dem aktuellen Fertigungsstand unserer Produkte. Die online verfügbaren Bedienungsanleitungen könnten bedingt durch technische Änderungen nicht immer dem technischen Stand des von Ihnen erworbenen Produkts entsprechen. Sollten Sie eine dem technischen Stand Ihres Produktes entsprechende Bedienungsanleitung benötigen, können Sie diese mit Angabe des zugehörigen Belegdatums und der Seriennummer bei uns kostenlos per E-Mail (info.de@kobold.com) im PDF-Format anfordern. Wunschgemäß kann Ihnen die Bedienungsanleitung auch per Post in Papierform gegen Berechnung der Portogebühren zugesandt werden.

1 Einleitung

1.1 Voraussetzungen für Modbus Nutzung

DUC-MF unterstützt ab Firmware Version V1.21 MODBUS Datentransfer über MODBUS Protokoll mittels der optional nachrüstbaren RS485 Schnittstelle.

Um die Modbus Funktionalität nutzen zu können, muss daraus folgend Ihr DUC-MF mit einer RS485 Schnittstellenkarte sowie einer Firmware Version ab V1.21 ausgestattet sein.

1.2 Unterstützte Modbus Betriebsarten

DUC-MF unterstützt Modbus RTU und ASCII.

Modbus RTU:

(RTU=Remote Terminal Unit), die Messdaten werden als binäre Abfolge übertragen.

Modbus ASCII:

(ASCII=American Standard Code for Information Interchange), die Daten werden in Textform übertragen.

Achtung!

Die Modbus Kommunikation erfolgt gegenwärtig ausschließlich im "Request Format Function 04". Somit können ausschließlich Messdaten aus dem Messumformer abgefragt, aber keine Daten auf den Messumformer geschrieben werde. Daraus folgt, dass es nicht möglich ist die Geräteparametrierung über Modbus-Kommunikation vom Master ausgehend zu verändern.

Parameter, wie beispielsweise Slave Adresse, Messwerteinheiten können nur mittels der Ortsbedienung am DUC-MF Messumformer verändert werden.

1.3 Installationshinweise

Die RS 485 Schnittstellenkarte ist mit Push-in-Doppelfederklemmen ausgestattet, die eine einfache und schnelle Installation von Kabelverbindungen ermöglichen. Die Leitung kann ohne Kraftaufwand durch werkzeuglose Direktstecktechnik kontaktiert werden (siehe Abbildung 1.1). Ein fest vorgegebener Käfig der kombinierten Feder sorgt für Stabilität der Verbindung: ein seitliches Verrutschen des Leiters ist so ausgeschlossen.

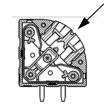


Abbildung 1.1: Push-In Federverbindung (Quelle: www.phoenixcontact.com)

Abbildung 1.2: Detaildarstellung der Push-In Federverbindung (Quelle: www.phoenixcontact.com)

Die Klemmverbindung ist für Massivleiter und Leiter mit Aderendhülse (1.5 mm² Querschnitt) geeignet. Die Leiter werden einfach in die Push-in-Klemmstelle eingeführt und mittels Druck durch einen Schlitz-Schraubendreher (Größe: 0,4 x 2,5) auf die dafür vorgesehene Nut gelöst (vgl. Abbildung 1.2). Beim Anschluss sowie zum Lösen sehr kleiner, feindrahtiger Leiter ohne Aderendhülse kann die Klemmstelle ebenfalls per Schraubendreher geöffnet werden.

Die Integration eines DUC-MF in eine Bus-Kette erfolgt über 2-Leiter-Anschluss (zuzüglich Bus-GND).

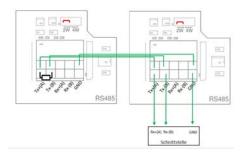


Abbildung 1.3: Beispiele für die Integration eines DUC-MF in eine Bus-Kette mit vernachlässigbarem Rauschen (einfache Terminierung):

Technische Details zum Bus

Maximale Anzahl der Busteilnehmer:

→ 32 (ohne Repeater)

→ Je nach Störpegel, Terminierung und Leitungslänge kann sich die maximale Anzahl reduzieren

Maximale Bus-Länge: kann je nach Datenübertragungsrate variieren

→ 1200 Baud: 1200m → 115200 Baud: 12m

Erdung:

Der Erdungsanschluss/Common der Bus Leitung muss direkt mit der Schutzerde (PE) verbunden werden, vorzugsweise an einem Punkt für den gesamten Bus (für gewöhnlich am Master-Gerät). Sollte die Kabelschirmung für den Common-Anschluss verwendet werden (es könnten Störungen über den GND der RS485 Transceiver eingekoppelt werden), dann sollte dieser an mindestens 2 Punkten mit PE verbunden werden.

Leitungs-Terminierung (LT)

Zur Minimierung der Reflexionen vom Ende des RS485-Kabels ist es erforderlich, eine Leitungsabschluss in der Nähe von jedem der zwei Enden des Bus zu platzieren. Es ist wichtig, dass die Leitung an beiden Enden abgeschlossen werden, da die Ausbreitung des Signals bidirektional ist. Es ist jedoch nicht erlaubt, mehr als 2 LT bei einer passiven Terminierung zu platzieren.

Stellen Sie niemals eine LT zum Erdungsanschluss her. Die Terminierung muss immer zwischen den beiden Leitern (A+ und B-) der symmetrischen Leitung angeschlossen werden.

- → einfache Terminierung (120 Ohm Widerstand)
- → RC-Terminierung: zwischen A+ und B- einen Kondensator (1 nF, 10 V Minimum) und Widerstand (120 Ohm, 0,25 W) in Reihe
- → Fail-Safe Terminierung aktiv oder passiv (siehe Polarisierung)

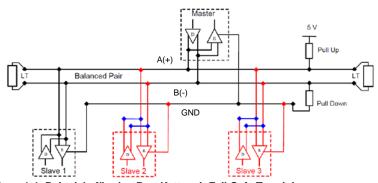


Abbildung 1.4: Beispiele für eine Bus-Kette mit Fail-Safe Terminierung

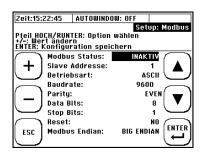
Polarisierung

Wenn auf einem RS-485-symmetrischen Paar keine Daten aktiv sind, sind die Leitungen anfällig für externes Rauschen oder Interferenz.

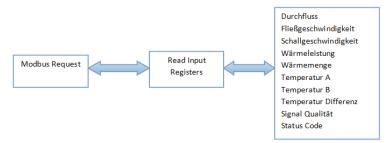
Um sicherzustellen, dass der Empfänger in einem konstanten Zustand verbleibt, wenn kein Datensignal vorhanden ist, kann eine Polarisierung (Vorspannung) genutzt werden.

- → Pull-Up-Widerstand zwischen 5V Spannung und +A Leitung
- → Pull-Down-Widerstand zwischen GND und -B Leitung

Der Wert dieser Widerstände sollte zwischen 450 Ohm und 650 Ohm liegen. 650 Ohm Widerstände erlauben eine höhere Anzahl von Geräten im Bus. In diesem Fall wird sollte die Polarisierung an einem Punkt für den gesamten Serial Bus implementiert werden (im Allgemeinen in der Nähe des Master). Die maximale Anzahl von Geräten in einem polarisierten Bus reduziert sich um 4 (verglichen mit einem nicht-polarisierten).


2 Parametrierung des Messumformers

Wählen Sie vom Hauptmenü ausgehend den Menüpunkt "6 Serial / Modbus / Logger", wählen Sie anschließend das Modbus Setup.


Im folgenden Modbus Setup Fenster können Sie sämtliche Einstellungen der Modbus Funktionalität durchführen:

Slave Adress	0247
Mode	RTU, ASCII
Baudrate	9600, 19200, 38400, 56000, 57600, 115200
Parität	Odd, Even, Non
Datenbits	8
Stop Bits	1
Factory Reset	Yes, No
Modbus Endian	Big Endian, Little Endian

3 Modbus Kommunikation Aufbau

3.1 Modbus Abfrageregister Aufbau

Modbus Register können nur ausgelesen werden. Modbus Master PC-Applikationen bieten die Möglichkeit der Darstellung von Doppel Worten (2 x 2 Byte = 32bit). Die Bytes werden entsprechend der gewählten Endian-Codierung (Byte-Reihenfolge) ausgegeben. Es kann zwischen Big und Little Endian Codierung gewählt werden.

Übersicht – Darstellung der Zahl 439 041 101 (Hexadezimaldarstellung: 1A2B3C4D) in den verschiedenen Codierungsarten:

	В	ig	Lit	tle	Mic	ldle	Mix	red
	End	dian	End	dian	End	lian	Enc	lian
Adresse	Hex	Dez	Hex	Dez	Hex	Dez	Hex	Dez
10000	1A	26	4D	77	2B	43	3C	60
10001	2B	43	3C	60	1A	26	4D	77
10002	3C	60	2B	43	4D	77	1A	26
10003	4D	77	1A	26	3C	60	2B	43

3.2 Modbus Master → Slave, Kommunikations-Beispiel

Eine Anfrage Master → Slave hat folgenden Aufbau:

Anrage (Request)	
Field name	Hex
Slave address	01
Function code	04 (read input register)
Starting address Hi	00
Starting address Lo	00
Number of input register. Hi	00
Number of input register. Lo	2E

Die Antwort des Slaves geschieht unter der Annahme, dass der dezimale Fließwert (zuerst 4 Byte – siehe Register Übersicht) 87.92 ist (4 byte double)

Antwort (Response)	
Field name	Hex
Slave address	01
Function code	04 (read input register)
Byte count	36
Input register 0x00. Hi	DA
Input register 0x00. Lo	10
Input register 0x01. Hi	42
Input register 0x01. Lo	AF
Input register 0x1A. Lo	0x00

4 Modbus Registerübersicht

Die gesamte Register Größe beträgt 125 Doppel Worte (250 Byte). Die Modbus Register Adresse startet von 0 bis 124. Im gegenwärtigen Status nur die ersten 17 Doppel Worte beinhalten gültige Werte.

4.1 Registerübersicht der Messgrößen – 1 Kanal Messumformer (Big Endian) für Software-Version 1.XX.XX

Parameter	Input Register Adresse (Hex)	Anzahl der Input Register (Decimal)	Format (Big Endian)
Durchfluss	0x0000 - 0x0001	2	Float AB CD
Durchfluss	0x0002	1	unsigned
Einheiten Code			
Fließgeschwindigkeit	0x0003 - 0x0004	2	Float AB CD
Schallgeschwindigkeit	0x0005 - 0x006	2	Float AB CD
Fließgeschwindigkeit	0x0007	1	unsigned
Einheiten Code			
Aufsummierter	0x0008 - 0x0009	2	Float AB CD
Durchfluss			
Aufsummierter	0x000A	1	unsigned
Durchfluss			
Einheiten Code			
Wärmeleistung	0x000B - 0x00C	2	Float AB CD
Wärmeleistung	0x000D	1	unsigned
Einheiten Code			
Wärmemenge	0x000E – 0x000F	2	Float AB CD
Wärmemenge	0x0010	1	unsigned
Einheiten Code			
Analog Input A	0x0011 - 0x0012	2	Float AB CD
Analog Input B	0x0013 - 0x0014	2	Float AB CD
Temperatur A	0x0015 – 0x0016	2	Float AB CD
Temperatur B	0x0017 - 0x0018	2	Float AB CD
Differenztemperatur	0x0019 – 0x001A	2	Float AB CD
Differenztemperatur	0x001B	1	unsigned
Einheiten Code			
Signal Qualität	0x001C - 0x001D	2	Float AB CD
Gerätestatus	0x001E	1	unsigned
text code			
Wärmemenge Positiv	0x001F - 0x0020		Float AB CD
Wärmemenge Negativ	0x0021 - 0x0022		Float AB CD
Reserve	0x0023 to 0x007C	90(0x5A)	

4.2 Registerübersicht der Messgrößen – 2 Kanal Messumformer (Big Endian) für Software-Version 1.XX.XX

Parameter	Input Register Adresse (Hex)	Anzahl der Input Register (Decimal)	Format (Big Endian)
Durchfluss CH1	0x0000 - 0x0001	2	Float AB CD
Durchfluss CH2	0x0002 - 0x0003	2	Float AB CD
Durchfluss	0x0004	1	unsigned
Einheiten Code			_
Fließgeschwindigkeit CH1	0x0005 - 0x0006	2	Float AB CD
Fließgeschwindigkeit CH2	0x0007 - 0x0008	2	Float AB CD
Schallgeschwindigkeit CH1	0x0009	2	Float AB CD
Schallgeschwindigkeit CH2	0x000A - 0x000B	2	Float AB CD
Geschwindigkeit	0x000C	1	unsigned
Einheiten Code			· ·
Aufsummierter	0x000D - 0x000E	2	Float AB CD
Durchfluss CH1			
Aufsummierter	0x000F - 0x0010	2	Float AB CD
Durchfluss CH2			
Aufsummierter Durchfluss	0x0011	1	unsigned
Einheiten Code			
Wärmeleistung (CH1+CH2)/2	0x0012 - 0x0013	2	Float AB CD
Wärmeleistung	0x0014	1	unsigned
Einheiten Code			
Wärmemenge (CH1+CH2)/2	0x0015 - 0x0016	2	Float AB CD
Wärmemenge	0x0017	1	unsigned
Einheiten Code			
Temperatur A	0x0018 - 0x0019	2	Float AB CD
Temperatur B	0x001A - 0x001B	2	Float AB CD
Differenztemperatur	0x001C - 0x001D	2	Float AB CD
Differenztemperatur	0x001E	1	unsigned
Einheiten Code			
Signal Qualität CH1	0x001F- 0x0020	2	Float AB CD
Status CH1	0x0021	1	unsigned
Signal Qualität CH2	0x0022 - 0x0023	2	Float AB CD
Status CH2	0x0024	1	unsigned
Reserve	0x0025 - 0x007C	88(0x58)	

4.3 Registerübersicht der Messgrößen – 1 Kanal Messumformer (Big Endian) für Software-Version 2.XX.XX

Parameter	Input Register Adresse (Hex)	Anzahl der Input Register (Decimal)	Format (Big Endian)
Durchfluss	0x0000 - 0x0001	2	Float AB CD
Durchfluss	0x0002	1	unsigned
Einheiten Code			
Fließgeschwindigkeit	0x0003 - 0x0004	2	Float AB CD
Schallgeschwindigkeit	0x0005 - 0x006	2	Float AB CD
Fließgeschwindigkeit Einheiten Code	0x0007	1	unsigned
Aufsummierter Durchfluss	0x0008 - 0x0009	2	Float AB CD
Aufsummierter Durchfluss Einheiten Code	0x000A	1	unsigned
Wärmeleistung	0x000B - 0x00C	2	Float AB CD
Wärmeleistung	0x000D	1	unsigned
Einheiten Code			· ·
Wärmemenge	0x000E - 0x000F	2	Float AB CD
Wärmemenge	0x0010	1	unsigned
Einheiten Code			_
Analog Input A	0x0011 - 0x0012	2	Float AB CD
Analog Input B	0x0013 - 0x0014	2	Float AB CD
Temperatur A	0x0015 - 0x0016	2	Float AB CD
Temperatur B	0x0017 - 0x0018	2	Float AB CD
Differenztemperatur	0x0019 - 0x001A	2	Float AB CD
Differenztemperatur	0x001B	1	unsigned
Einheiten Code			
Signal Qualität	0x001C - 0x001D	2	Float AB CD
Gerätestatus text code	0x001E	1	unsigned
Wärmemenge Positiv	0x001F - 0x0020		Float AB CD
Wärmemenge Negativ	0x0021 - 0x0022		Float AB CD
Reserve	0x0023 to 0x007C	90(0x5A)	

4.4 Registerübersicht der Messgrößen – 2 Kanal Messumformer (Big Endian) für Software-Version 2.XX.XX

Parameter	Input Register Adresse (Hex)	Anzahl der Input Register (Decimal)	Format (Big Endian)
Durchfluss CH1	0x0000 - 0x0001	2	Float AB CD
Durchfluss CH2	0x0002 - 0x0003	2	Float AB CD
Durchfluss	0x0004	1	unsigned
Einheiten Code			
Fließgeschwindigkeit CH1	0x0005 - 0x0006	2	Float AB CD
Fließgeschwindigkeit CH2	0x0007 - 0x0008	2	Float AB CD
Schallgeschwindigkeit CH1	0x0009	2	Float AB CD
Schallgeschwindigkeit CH2	0x000A - 0x000B	2	Float AB CD
Geschwindigkeit	0x000C	1	unsigned
Einheiten Code			
Aufsummierter	0x000D - 0x000E	2	Float AB CD
Durchfluss CH1			
Aufsummierter	0x000F - 0x0010	2	Float AB CD
Durchfluss CH2			
Aufsummierter Durchfluss	0x0011	1	unsigned
Einheiten Code			
Wärmeleistung (CH1+CH2)/2	0x0012 - 0x0013	2	Float AB CD
Wärmeleistung	0x0014	1	unsigned
Einheiten Code			
Wärmemenge (CH1+CH2)/2	0x0015 - 0x0016	2	Float AB CD
Wärmemenge	0x0017	1	unsigned
Einheiten Code			
Analog Input A	0x0018 - 0x0019	2	Float AB CD
Analog Input B	0x001A – 0x001B	2	Float AB CD
Temperatur A	0x001C - 0x001D	2	Float AB CD
Temperatur B	0x001E - 0x001F	2	Float AB CD
Differenztemperatur	0x0020 - 0x0021	2	Float AB CD
Differenztemperatur	0x0022	1	unsigned
Einheiten Code			
Signal Qualität CH1	0x0023 - 0x0024	2	Float AB CD
Status CH1	0x0025	1	unsigned
Signal Qualität CH2	0x0026 - 0x0027	2	Float AB CD
Status CH2	0x0028	1	unsigned
Reserve	0x0029 - 0x007C	88(0x58)	

4.5 Volumenstrom Einheiten Registerübersicht

(Input Register: 0x0002)

Flow unit code	Flow unit
0x00	m³/s
0x01	m³/min
0x02	m³/h
0x03	I/s
0x04	l/min
0x05	l/h
0x06	gal/s
0x07	gal/min
0x08	gal/h
0x09	ft³/s
0x0A	ft³/min
0x0B	ft³/h
0x0C – 0xFF	Reserve

4.6 Fließgeschwindigkeit Einheiten Registerübersicht

(Input Register: 0x0007)

Fluid velocity code	Fluid velocity unit
0x00	m/s
0x01	ft/s
0x02 – 0xFF	Reserved

4.7 Mengenzähler Einheiten Registerübersicht

(Input Register: 0x0007)

Total flow unit code	Total Flow unit
0x00	m³
0x01	I
0x02	gal
0x03	ft3
0x04 – 0xFF	Reserved

4.8 Wärmeleistung / Wärmemenge Einheiten Registerübersicht

(Input Register: 0x0010)

Heat unit code	Heat unit
0x00	MWh
0x01	kWh
0x02	Wh
0x03	BTU[I.T]
0x04	J
0x05 – 0xFF	Reserved

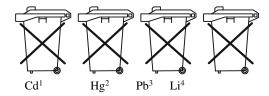
4.9 Temperatur Einheiten Registerübersicht

(Input Register: 0x0017)

Temp unit code	Temp unit
0x00	C (Celsius)
0x01	F (Fahrenheit)
0x02 – 0xFF	Reserved

4.10 Statusmeldungen Registerübersicht (Input Register: 0x001A)

Status text code	Device status
0x00	OK
0x01	NO SIG
0x02	WSCAN
0x03 – 0xFF	Reserve


5 Entsorgung

Hinweis!

- Umweltschäden durch von Medien kontaminierte Teile vermeiden
- Gerät und Verpackung umweltgerecht entsorgen
- Geltende nationale und internationale Entsorgungsvorschriften und Umweltbestimmungen einhalten.

Batterien

Schadstoffhaltige Batterien sind mit einem Zeichen, bestehend aus einer durchgestrichenen Mülltonne und dem chemischen Symbol (Cd, Hg, Li oder Pb) des für die Einstufung als schadstoffhaltig ausschlaggebenden Schwermetalls versehen:

- 1. "Cd" steht für Cadmium.
- 2. "Hg" steht für Quecksilber.
- 3. "Pb" steht für Blei.
- 4. "Li" steht für Lithium

Elektro- und Elektronikgeräte

Notizen:		 	
	-	 	

Kobold Messring GmbH

Nordring 22-24 D-65719 Hofheim Tel.: +49(0)6192-2990 Fax: +49(0)6192-23398

E-Mail: info.de@kobold.com Internet: www.kobold.com