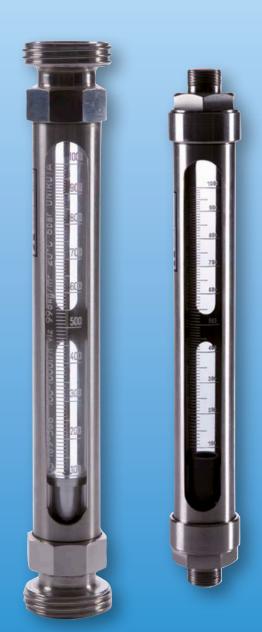


Variable Area Flow Meter/Monitor

glass cone with threaded connection



measuring

o
monitoring

analysing

URM

Measuring range:
 Water: 0.25...2.5 - 2500...25000 l/h
 Air: 0.0032...0.032 - 32...320 Nm³/h

Accuracy: ±2 % q_G = 50 %
 (2,5 % for gases)

 \bullet p_{max}: 16 bar; t_{max}: 100 °C (65 °C for PVC)

Connection: G ¾ ... 3 male,
 G ¼ ... 1½ female

Material: stainless steel 1.4301, 1.4404

KOBOLD companies worldwide:

AUSTRALIA, AUSTRIA, BELGIUM, BULGARIA, CANADA, CHINA, CZECHIA, FRANCE, GERMANY, GREAT BRITAIN, HUNGARY, INDIA, INDONESIA, ITALY, MALAYSIA, MEXICO, NETHERLANDS, PERU, POLAND, REPUBLIC OF KOREA, RUSSIA, SPAIN, SWITZERLAND, THAILAND, TUNISIA, TURKEY, USA, VIETNAM

KOBOLD Messring GmbH Nordring 22-24 D-65719 Hofheim/Ts.

Head Office: +49(0)6192 299-0 +49(0)6192 23398 info.de@kobold.com

www.kobold.com

0

1

Variable Area Flow Meter/Monitor Model URM

Description

The KOBOLD URM model flow meter/monitor works on the basis of the suspended float principle. It is used for measuring the flow rates in closed pipe line systems.

The medium flows from below through a glass measuring cone that gets wider on top. Thus, the float is raised and indicates the respective flow rate on the scale provided on the measuring cone. To monitor flow rate limits, the URM meters can be optionally furnished with "open collector" proximity switches. By its special design, this model is particularly suitable for applications where only very small operating pressures are available. Another advantage is offered by the very large sight glass which optically allows direct flow observation.

Applications

- Domestic engineering
- Cooling circuits
- Plant engineering
- Water treatment
- Heating
- Machine tools
- Solar systems
- Welding machines
- Paper machines
- Glass melting pots
- Extrusion machines
- Induction furnaces

Technical Details

Installation position: vertical

Accuracy: $\pm 2\% q_G = 50\% (2.5\% \text{ for gases})$

acc. VDE/VDI 3513 page 2

Max. temperature: $100\,^{\circ}\text{C}$ (65 $^{\circ}\text{C}$ for PVC)

Max. pressure: 01H...37H 16bar

43H...57H 12 bar 63H...65H 8 bar 01L...37L 16 bar 43L...55L 10 bar 63L...65L 6 bar

Calibration conditions: water: 20 °C, air: 20 °C,

air pressure: 1.013 bar abs.

Contact (optional)

Proximity switch: PNP open collector, n. o. contact

(monostable)

Cable: 2 m, PVC-insulated

Protective category: IP67

Materials

Material combination URM

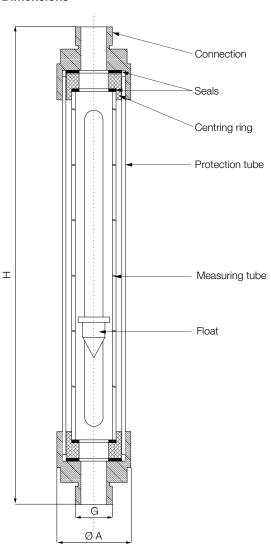
Ordering code	Connection	Float	Seal	Centring ring	Protection tube	Measuring tube
33	1.4301	1.4301	NBR	PVC		borosilicate glass
55	1.4404	1.4404	FPM	PTFE]	
99*	1.4301	1.4301	NBR	PVC		
	1.4404	1.4404	EPDM	PTFE	st. steel 1.4301	
		aluminium	FPM	1.4301		
		PTFE	PTFE			
		PVC				
		PP				

^{*} Customer specification on request

Variable Area Flow Meter/Monitor Model URM

Order Details (Example: URM- 33 01H I2 00)

Model	Material combi- nation	Instru- ment length	Measurii	Pressure	Thread co	Contacts ¹⁾				
			water [l/h]	air [Nm³/h]	loss [mbar]	female	male			
			01H = 0.252.5	01L = 0.00320.032	6					
			03H = 0.44	03L = 0.0080.08	6	I2 = G ½	G2 = G 1/4			
		210 mm	05H = 0.636.3	05L = 0.020.2	8	I3 = G %	G3 = G 3/8 G4 = G 1/2			
			07H = 110	07L = 0.0320.32	10	I4 = G ½				
			09H = 1.616	09L = 0.050.5	10			00 = no		
				11L = 0.020.2	10		G2 = G ½ G3 = G % G4 = G ½	contact		
			13H = 110	13L = 0.0320.32	10					
	33 55 99 ²⁾	360 mm	15H = 1.616	15L = 0.050.5	10	I2 = G ¼ I3 = G %				
			17H = 2.525	17L = 0.080.8	12	10 - 0 70				
URM-			19H = 4.040	19L = 0.131.3	12					
		360 mm	22H = 6.363	22L = 0.22.0	17		G3 = G % G4 = G ½ G5 = G %	00 = none 1A = 1x N/O, PNP 2A = 2x N/O, PNP		
			24H = 10100	24L = 0.323.2	24	I3 = G %				
			26H = 16160	26L = 0.55.0	28	I4 = G ½				
			28H = 25250	28L = 0.88.0	25					
		360 mm	33H = 40400	33L = 1.313	36		G4 = G ½ G5 = G ¾ G6 = G 1	00 = none 1B = 1x N/O, PNP 2B = 2x N/O, PNP		
			35H = 63630	35L = 2.020	34	I4 = G ½ I5 = G ¾				
			37H = 1001000	37L = 3.232	43	13 – G 74				
		440 mm	43H = 1001000	43L = 3.232	43		G5 = G ¾ G6 = G 1			
			45H = 1601600	45L = 5.050	48	I5 = G ¾				
			47H = 2502500	47L = 8.080	51	I6 = G 1 I7 = G 1 ½	G7 = G 1 ½ G8 = G 1 ½	l		
		440 mm	53H = 4004000	53L = 13130	51	I6 = G 1	G6 = G 1 G7 = G 1 1/4 G8 = G 1 1/2	00 = none 1C = 1x N/O, PNP		
			55H = 6306300	55L = 20200	57	I7 = G 1 ½ I8 = G 1 ½				
			57H = 100010000		70	19 = G 2	G9 = G 2			
		600 mm ·	63H = 160016000	63L = 32320	93	I8 = G 1½ I9 = G 2	G8 = G 1½ G9 = G 2	2C = 2x N/O, PNP		
			65H = 250025000		102	IA = G 2 ½ IB = G 3	GA = G 2 ½ GB = G 3			
		on request	YYY = others		on request					


 $^{^{\}mbox{\tiny 1)}}\mbox{Monostable}$ switch. Other switching functions on request

²⁾Customer specification on request

 $^{^{\}mbox{\tiny (3)}}\mbox{For NPT-threads, please replace "lx" with "Mx" and "Gx" with "Nx".}$

Dimensions

URM with female/male thread (F = female/M = male)													
Model	H [mm]	A [mm]	1⁄4"	3/8"	1/2"	3/4"	1"	1 1/4"	1 ½"	2"	2½"	3"	
URM-xx 0	210	29,5	F/M	F/M	F/M	-	-	-	-	-	-	-	
URM-xx 1			F/M	F/M	-/M	-	-	-	-	-	-	-	
URM-xx 2	360	40,0	-	F/M	F/M	-/M	-	-	-	-	-	-	
URM-xx 3		49,5	-	-	F/M	F/M	-/M	-	-	-	-	-	
URM-xx 4	440		62,0	-	-	-	F/M	F/M	F/M	-/M	-	-	-
URM-xx 5		82,0	-	-	-	-	F/M	F/M	F/M	F/M	-	-	
URM-xx 6	600	122,0	-	1	-	1	-	1	F/M	F/M	F/M	F/M	