Kobold ACM-1

Transmitter/controller for conductivity, TDS, resistance, temperature and standard signals

Operating instructions

WARNING:

A sudden malfunction of the instrument, or one of the sensors connected to it, could potentially result in dangerous overdosing! Suitable preventive measures must be in place to prevent this from happening.

Note:

Please read these Operating Instructions before placing the instrument in operation. Keep the manual in a place which is accessible to all users at all times.

Resetting the brightness of the LC display:

If the brightness setting has been adjusted so that the display text is no longer legible, the basic setting can be restored as follows:

- * Switch off the supply voltage.
- ★ Switch on the supply voltage and immediately press and hold the ▼ and ▲ keys simultaneously.

Operator language selection:

- ***** Press the \bowtie key for longer than 3 seconds.
- * Select the appropriate language with the $\mathbf{\nabla}$ and $\mathbf{\Delta}$ keys.
- ★ Briefly press the ^{PGM} key.

Contents

1 1.1 1.2	Typographical conventions Warning signs Reference signs	7
2	Description	8
3 3.1 3.2 3.3 3.4	Instrument identification Nameplate Type designation Accessories (included in delivery) Accessories (optional)	10 10 12
4 4.1 4.2	Mounting General information Dimensions	13
5 5.1 5.2 5.3	Installation Installation instructions Electrical isolation Connection	14 15
6 6.1 6.2 6.3	Operation Controls Display Principle of operation	20 21
6.4 6.5 6.6 6.7 6.8 6.9	Measuring mode Input/output information User level Administrator level MANUAL mode / Simulation mode HOLD mode	26 31 32 35
7 7.1 7.2	Commissioning	 40 40
8 8.1 8.2 8.3 8.4	Calibrating a conductivity cell Notes General information Calibration of the temperature coefficient of the sample medium Calibrating the relative cell constant	47 47 48

Contents

9	Calibrating a sensor with a standard signal	53
9.1	General information	
9.2	Linear operating mode	
9.3	pH operating mode	
9.4	Conductivity operating mode	
9.5 9.6	Concentration operating mode Chlorine measurement operating mode, pH-compensated 71	
10	Calibration logbook	73
10.1	General information	73
11	Controller	
11.1	General information	
11.2	Controller functions	
11.3	Software controllers and outputs	75
11.4	Configuration of higher order controllers	77
11.5	Parameter sets	
11.6	Sample configurations	78
12	Setup program	
12.1	Configurable parameters	
12.2	Documenting the instrument configuration	
12.3	Special features for "Datalogger"	
13	Eliminating faults and malfunctions	84
14	Technical data	86
14.1	Approvals/marks of conformity	88
15	Retrofitting optional boards	89
15.1	Identifying an optional board	
15.2	Removing a plug-in module	
15.3	Inserting a plug-in module	
15.4	Retrofitting optional boards (field housing)	92
16	Appendix	
16.1	Glossary	
16.2	Parameters of the User level	
17	EU Declaration of Conformance	
18	UK Declaration of Conformance	119

Index

1-point calibration - pH 59 2-point calibration 97 2-point calibration - pH 61

A

Accessories 12 Administrator 32

В

Basic setting 32 Binary inputs and outputs States 29

С

Calibration Logbook 73 pH, 2-point 61 Standard signal 53 Standard signal, options 54 Calibration release 35 Cell constant 51-52 Configurable parameters 80 Controller "Higher order" switching functions 74 "Simple" switching functions 74 Configuration of "higher order" controllers 77 General information 74 Parameter sets 77 Setting example, limit monitoring 78 Controller functions 74 Customer settings 106

D

Datalogger Special features 82 Date of manufacture 10 Delete 35 Display 21

Ε

Electrical isolation 15

F

Factory settings 106

G

Getting started 40

Η

HOLD mode 38

Info Hardware 30 Instrument 31 Installation position 13

Κ

Key combinations 26

L

Language selection 2 Limit functions 99

Μ

Manual 30 MANUAL mode 35 Analog outputs 37 Binary outputs 37 Controller 36 Deactivation 39 Switching outputs 36 Manual mode overview 30 Menu Customer specs. 27 Min/max values 27–28 Mounting location 13

0

Optional inputs Current values 29 Output 28 Output display 28

Ρ

Parameter overview 106 Password 32 Ph. Eur. 102 Principle 22 Principle of operation 26 Purified water 102

R

Rapid access 26 Reference signs 7 Reset display brightness 2

S

Setting the operator language 2 Setup program 80 Simulation mode 35 Simulation of binary outputs 37 States 29 Sunlight 13

Т

TDS measurement 102 Temperature compensation 97–98

U

Ultra-pure water 101 User *31* User data *27* USP 101

W

Warning signs 7 Wash timer 100 Washing contact 100

Ζ

Zero point calibration 97

The instruction manuals on our website <u>www.kobold.com</u> are always for currently manufactured version of our products. Due to technical changes, the instruction manuals available online may not always correspond to the product version you have purchased. If you need an instruction manual that corresponds to the purchased product version, you can request it from us free of charge by email (<u>info.de@kobold.com</u>) in PDF format, specifying the relevant invoice number and serial number. If you wish, the operating instructions can also be sent to you by post in paper form against an applicable postage fee.

1.1 Warning signs

Danger

This symbol is used when there may be **danger to personnel** if the instructions are ignored or not followed correctly!

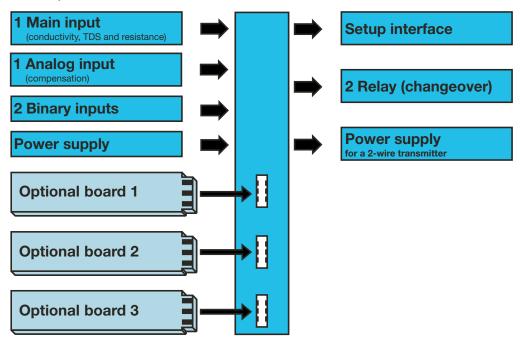
Caution

This symbol is used when there may be **damage to equipment or data** if the instructions are ignored or not followed correctly!

1.2 Reference signs

Note

This symbol is used to draw your **special attention** to a remark.


abc ¹	Footnote
	Footnotes are remarks that refer to specific points in the text. Footnotes consist of two parts:
	A marker in the text and the footnote text.
	The markers in the text are arranged as consecutive superscript numbers.
*	Instruction
	This symbol indicates the description of an action to be performed.
	The individual steps are marked by this asterisk.
	Example:
	★ Briefly press the ▲ key.

2 Description

Inputs/outputs In addition to the main input (conductivity, TDS, resistance) and the secondary input (temperature compensation), the basic instrument alone has two binary inputs, two relays, one power supply for external sensors and a setup interface.

Input signals can be shown as numbers or as a bar graph on the graphic display. Parameters are displayed in plain text for easily comprehensible and reliable operation.

Optional Three further slots can be fitted with extensive additional configurable inputs and outputs and interfaces.

Application The instrument is suitable, for example, for displaying, measuring and controlling:

- Conductivity, TDS and resistance.
- Free chlorine, chlorine dioxide, ozone, hydrogen peroxide and peracetic acid, in combination with suitable sensors.
- (Hydrostatic) liquid levels with 2-wire transmitters (level probes)
- Flow rate in conjunction with transmitters
- Two temperature measuring points.
- Most sensors and transmitters that output standard signals (0 10 V or 0(4) 20 mA).

Because temperature measurement is integrated, temperature compensation takes place quickly and precisely, which is particularly important for many analytical measurements.

Special features - Display: mS/cm, μS/cm, MOhm x cm, mg/l, pH, mV, etc. Special settings are also possible with the setup program


- Configurable display text (operator level)
- A choice of display visualizations: large numbers, bar graph or tendency

(trend) display

- Four limit controllers
- Integrated calibration routines: with 1, 2 and 3 points
- Math and logic module (optional)
- Calibration logbook
- Three optional slots
- Selectable languages: English, German, French, etc.
- Setup program provides: convenient programming, system documentation
- RS422/485 interface (optional)
- Profibus-DP interface (optional)

3.1 Nameplate

on the transmitter

The date of manufacture is encoded in the "F No." (serial number): 1122 means year of manufacture 2011 / calendar week 22

3.2 Type designation

Order Details (Example: ACM-1 E 1 0 0 0 Y)

Model	Version	Housing	Power supply	Option 1 (Optional board)	Option 2 (Optional board)	Option 3 (Optional board)	Special
ACM Evaluation electronics conducti- vity/ specific resistance/ TDS	1 = Compact-Line (new) Input: 1x conductivity/ specific resis- tance/TDS 1x temperature/ standard signal, 2x binary input sensor supply: 2-wire transmitter, 2 relays	 E = for panel mounting F = Field housing S = Field housing with wall mounting bracket R = Field housing with pipe mounting bracket 	1 = 110240 V _{AC} -15%/+10%, 4863 Hz 2 = 2030 V _{ACDC} , 4863 Hz		 0 = without 1 = universal input (Pt100, Pt1000, resistance, current, voltage) 2 = 1 relay (changeover contact) 4 = analogue output 0(4)-20 mA, 0(2)-10V 5 = 2 Photo-Mos relay switch (0.2 A) 6 = 1 semiconductor relay TRIAC (1A) 7 = 1 power supply 4.85 V (e. g. for ISFET sensor) 8 = 1 power supply 12 V_{DC} (e. g. for inductive proximity switch) 	 0 = without 1 = universal input (Pt100, Pt1000, resistance, current, voltage) 2 = 1 relay (changeover contact) 3 = 2 Relais (NO with common pin) 4 = analogue output 0(4)-20 mA, 0(2)-10 V 5 = 2 Photo-Mos relay switch (0.2 A) 6 = 1 semiconductor relay TRIAC (1A) 7 = 1 power supply 4.85 V (e. g. for ISFET sensor) 8 = 1 power supply 12 V_{DC} (e. g. for inductive proximity switch) S = Interface RS 422/485 D = Data logger with interface RS 485¹¹ P = Interface Profibus DP 	0 = without (factory set) Y = adjusted according to customer specification

¹⁾ The readout of data is only possible with the PC setup software! Note: All languages are available on the device side and can be changes by the customer at any time. The factory default setting of a language (except for "German") entail additional costs.

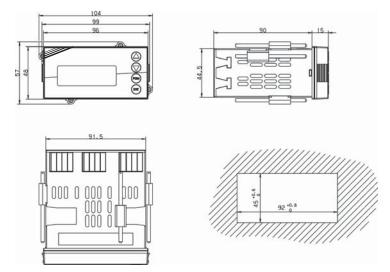
3 Instrument identification

3.3 Accessories (included in delivery)

- 4 x fastening elements, complete¹
- 3 x CON plug-in link¹
- 3 x jumper wire²
- 1 x seal for panel¹
- 1 x fastening elements, complete²
 - 1 x DIN rail fastening left
 - 1 x DIN rail fastening right
 - 3 x wall mount
 - 3 x fastening screw
- ¹ For basic type extension 01 only (in the panel enclosure)
- ² For basic type extension 05 only (in the surface-mounted enclosure)

3.4 Accessories (optional)

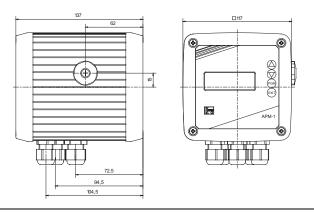
Туре	Sales No.
Holder for C rail	ACM-Halt
PC setup software	ACM-Soft
PC interface cable including USB/TTL converter and two adapters (USB connecting cable)	ACM-Int


Optional board	Code	Sales No.
Analog input (universal)	1	APM-1000001
Relay (1 x changeover)	2	APM-1000002
Relay (2 x NO)	3	APM-1000003
Analog output	4	APM-1000004
Two MosFET semiconductor switches	5	APM-1000005
Semiconductor relay 1 A	6	APM-1000006
Supply voltage output +/- 5 V DC (e.g. for ISFET)	7	APM-1000007
Supply voltage output 12 V DC (e.g. for inductive proximity switch)	8	APM-1000008
Interface - RS422/485	10	APM-100000S
Datalogger with RS485 interface	11	APM-100000D
Profibus-DP interface	12	APM-100000P

4.1 General

Mounting location	Find a location that ensures easy accessibility for the later calibration. The fastening must be secure and must ensure low vibration for the instrument.
	Avoid direct sunlight!
	Permissible ambient temperature at the installation location: -10 - 55°C with max. 95% rel. humidity, no condensation.
Installation position	The instrument can be mounted in any position.

4.2 Dimensions

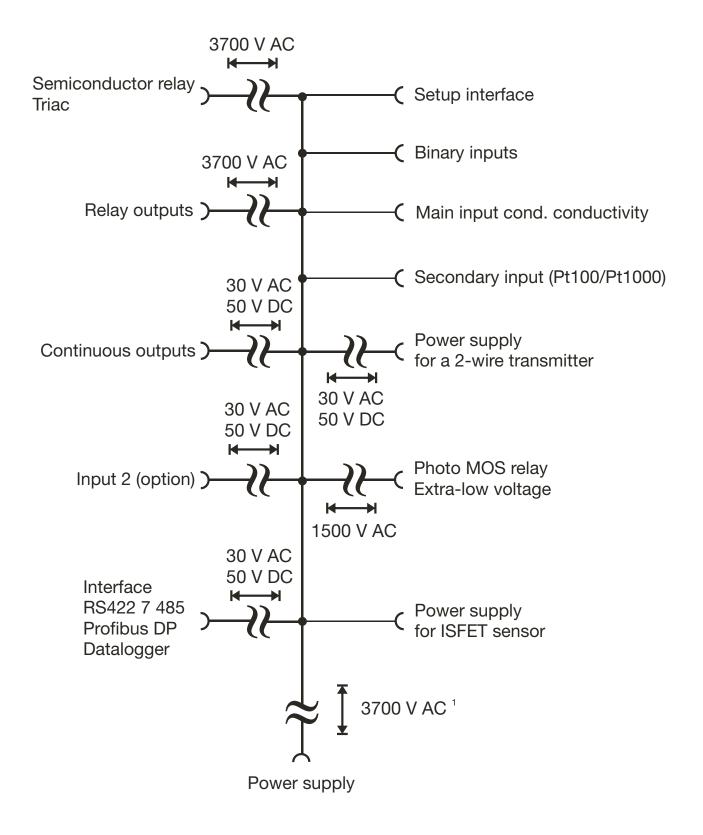

4.2.1 Panel mounting

Close mounting

Minimum spacing of panel cutouts	Horizontal	Vertical
Without setup connector:	30mm	11mm
With setup connector (see arrow):	65mm	11mm

4.2.2 Field housing

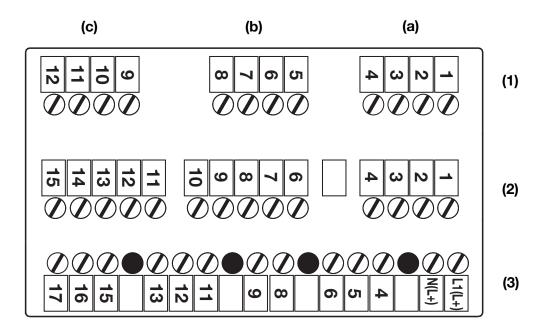
5.1 Installation instructions


The electrical connection must only be performed by qualified personnel!

- ❑ The choice of cable, the installation and the electrical connection must conform to the requirements of VDE 0100 "Regulations on the Installation of Power Circuits with Nominal Voltages below 1000 V" and the relevant local regulations
- □ If contact with live parts is possible when working on the device, it must be completely disconnected from the electrical supply.
- The load circuits must be fused for the maximum load currents in each case to prevent the relay contacts from becoming welded in the event of a short circuit.
- □ Electromagnetic compatibility meets the requirements of EN 61326.
- □ Lay the input, output, and supply lines so they are physically separated from each other and are not parallel.
- Use twisted and shielded probe cables. If possible, do not lay these cables close to components or cables through which current is flowing. Ground the shielding at one end.
- □ The probe cables must have an uninterrupted run (do not route them via terminal blocks or similar arrangements).
- No other consumers can be connected to the power terminals of the instrument.
- □ The instrument is not suitable for installation in areas with an explosion hazard.
- Apart from faulty installation, incorrect settings on the instrument may also affect the proper functioning of the subsequent process or lead to damage. You should therefore always provide safety equipment that is independent of the instrument and it should only be possible for qualified personnel to make settings.

Mounting information for conductor cross-sections and ferrules

Ferrule	Conductor	cross-section	Minimum length of ferrule or
	Minimum	Maximum	stripping
Without ferrule	0.34mm ² .	2.5mm ² .	10mm (stripping)
Without collar	0.25mm	2.5mm ² .	10mm
With collar up to 1.5mm ²	0.25mm ² .	1.5mm ² .	10mm
Twin, with collar	0.25mm ² .	1.5mm ² .	12mm


5.2 Electrical isolation

5 Installation

5.3 Connection

5.3.1 Terminal assignment

(1)	Row 1	(a) Option 1	(b)	Option 2	(c)	Option 3	
(2)	Row 2	Main input board (conductivity / resistance / temperature / standard signal)					
(3)	Row 3	PSU board (power supply / 2x relays)					

5.3.2 Optional board (row 1, slot a, b or c)

Function	Symbol	Terminal for slot (a)	Terminal for slot (b)	Terminal for slot (c)
Analog input			•	
Temperature sensor		2	6	10
in a two-wire circuit	<u>e 11 9</u>	4	8	12
Pt100 or Pt1000				
Temperature sensor	۰ ۲	2	6	10
in a three-wire circuit		3	7	11
Pt100 or Pt1000	o	4	8	12
Resistance transmitter	×	2	6	10
		3	7	11
	∽ s	4	8	12
	O			
Electrical current	O +	3	7	11
	O -	4	8	12

Installation

Function	Symbol	Termi for slo		rminal slot (b)		erminal r slot (c)
Voltage	O +	1		5		9
0(2) - 10 V	o -	2		6		10
Voltage	O +	2		6		10
0 - 1 V	o -	3		7		11
Continuous output						
Current or voltage	O +	2		6		10
	0 -	3		7		11
Modbus interface					•	
RS422	0 RxD+	1		5		9
	0 RxD-	2		6		10
	——————————————————————————————————————	3		7 8		11 12
		4		0		12
RS485		3		7		11
	O RxD/TxD-	4		8		12
Profibus interface						
		1		5		9
	O RxD/TxD-P(B)	2		6		10
	O RxD/TxD-N(A)	3		7		11
	O DGND	4		8		12
Datalogger interface						
RS485	O RxD/TxD+	2		6		10
	RxD/TxD-	3		7		11
Relay (1x changeover)	1					
	0 0	K3 1	K4	5	K5	9
	Ф Р	2		6		10
	o s	3		7		11
Relay (2x NO, common pin)						
	O S	K3 1			K5	9
	0 P	2				10
	└o s	K6 3			K8	11
Triac (1 A)	0.0					
	· · · · · · · · · · · · · · · · · · ·	K3 2	K4	6	K5	10
		3		7		11
Photo MOS relay (0.2 A)			 			
		K3 1	K4	5	K5	9
	▼⇒ '⊢	2		6		10
	' ' o					
		K6 3	K7	7	K8	11
	│ ¥ ⇒│;;	4		8		12

Installation

5.3.3 Main board (row 2)

Function	Symbol	Terminal
Standard signal input for electrical current	O +	3
0(4) - 20 mA	o -	4
Standard signal input	O +	1
for voltage	o -	4
0(2) - 10 V or 10 - 0(2) V		
Temperature sensor		2
in a two-wire circuit	<u>eft</u>	3
Pt100 or Pt1000	Q	4
Temperature sensor	o ۹ ۱ ۹	2
in a three-wire circuit	<u> </u>	3 4
Pt100 or Pt1000	o	
Resistance transmitter	E	4
	∽o s	3 2
	O A	2
Conductivity cell		
Conductivity cell (2-electrode system)	م	6
Terminals 6+7 and 8+9 can be bridged on the instrument;	·>	7 8
2-wire cable routing up to the head of the conductivity cell.		8 9
For concentric cells, terminal 6 must be connected with the outer electrode.	Q	ç
Conductivity cell (2-electrode system)	Ô	6
Wiring for highest accuracy;		7
4-wire cable routing to the head of the conductivity cell.		8 9
For concentric cells, terminal 6 must be connected with the outer electrode.	o	5
Conductivity cell (4-electrode system)	 0	6
6 - Outer electrode 1		7
7 - Inner electrode 1 8 - Inner electrode 2	0	8 9
9 - Outer electrode 2	L0	0
Shield connection		
Conductivity cell	$\bigcirc \frown \circ$	10 GND
Binary inputs		
Binary input 1	<u>~</u> ~~_0	12+
		14
Binary input 2	°	13+
		14
	O	

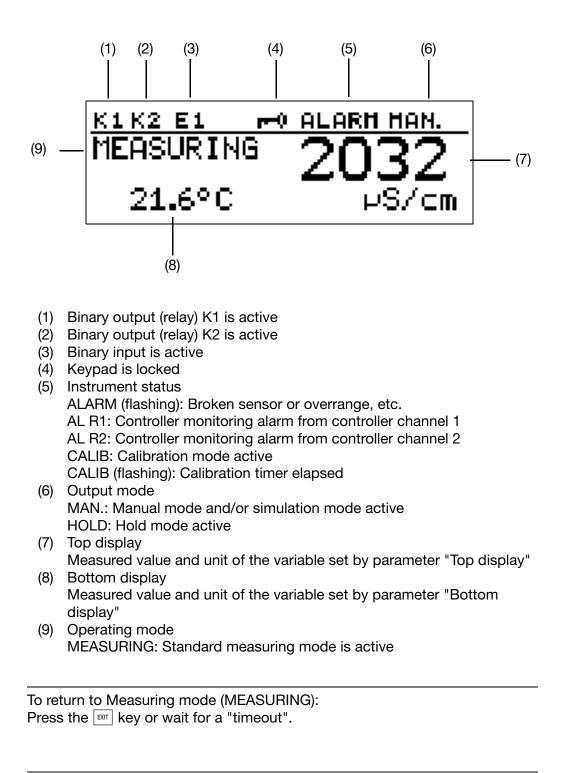
5.3.4 PSU board (row 3)

Function	Symbol	Terminal
Power supply for ACM-1		
Power supply:	o	1 L1 (L+)
AC 110 - 240 V	o	2 N (L-)
Power supply:		
AC/DC 20 - 30 V		
n.c.	O	4
	• • • • • •	5
		6
Supply voltage for external 2-wire transmitter		
24 V DC (-15 / +20%)	o	8 L+
	o	9 L–
Relay 1		
Switching output K1	0 0	11
(floating)	• • • • • • • • • • • • • • • • • • •	12
	o s	13
Relay 2		
Switching output K2	0 0	15
(floating)		16
		17
	03	

Operation via the instrument keypad is described below.

Instrument operation via th e optional set-up program, See section 12 "Setup program", page 80.

6.1 Controls



- (1) Measurement unit
- (2) Temperature
- (3) Operating mode
- (4) Measured value
- (5) **k**ey Increase numerical value / Forward selection
- (6) **V** key Decrease numerical value / Forward selection
- (7) RM key Change level / Forward selection / Confirm selection
- (8) EXT key Cancel entry / Exit level

6.2 Display

6.2.1 Measuring mode (normal display)

Example

6 Operation

6.3 Principle of operation

6.3.1 Operation in levels

				See page
Meas	urement m	ode		
	Norm	al display		25
	Min/m	nax values o	of the main input	27
	Min/m	nax values o	of the optional inputs	28
	Outpu	ut display		28
	Curre	nt values of	f the main input	28
	Curre	nt values of	the optional inputs	29
	Curre	nt values of	f the math channels	29
	States	s of the bina	ary inputs and outputs	29
	Manu	al mode ov	erview	30
	Hardv	ware inform	ation	30
	Instru	ment inforn	nation	31
	User o	data		81
	Calibr	ration (depe	ending on the basic setting)	47, 53
	Manu	al mode / s	imulation	35
	Hold ı	mode		38
Main	menu			
	User I	level		31
		Cond	luctivity input	106
		Temp	erature input	107
		Optio	onal inputs	107
			Analog input 1, 2, 3	
		Binar	y inputs	109
			Binary input 1, 2	
		Conti	rollers	109
			Controller 1	
			Parameter set 1, 2	
			Configuration	
			Controller 2	
			Parameter set 1, 2	
			Configuration	
			Controller special functions	111
		Limit	value control	111
			Limit value 1, 2, 3	
		Binar	y outputs	112
			Binary output 1, 2, 3, 8	
		Analo	og outputs	113
			Analog output 1, 2, 3	
		Interf		114
		Wash	i timer	115
		Datal	ogger	115

Admi	Display nistrator level (password)	115 32
	Parameter level	32
	Parameters as above for "User level"	02
	Release level	32
	Parameters as above for "User level"	02
	Basic setting	32
	Calibration level	35
	Main input (depending on the basic setting)	00
	Temperature coefficient, linear	
	Relative cell constant	
	Optional input 1, 2, 3	
	Temperature coefficient, linear	
	Temperature coefficient, curve	
	Relative cell constant	
	Zero point	
	Limit point	
	2-point	
	Calibration release	35
	Main input (depending on the basic setting)	
	Temperature coefficient, linear	
	Temperature coefficient, curve	
	Relative cell constant	
	Zero point	
	Limit point	
	2-point	
	3-point	
	K factor	
	Optional input 1, 2, 3	
	Temperature coefficient, linear	
	Temperature coefficient, curve	
	Relative cell constant	
	Zero point	
	Limit point	
	2-point	
	3-point	
	Delete min/max values	35
	Main input	
	Optional input 1, 2, 3	
	Delete logbook	35
	Main input	
	Optional input 1, 2, 3	
	Delete daily batch	35
	Delete total batch	35

6 Operation

Ca	alibration level		47
	Main	input	
		Temperature coefficient, linear	
		Temperature coefficient, curve	
	Optio	nal input 1, 2, 3	107
		Temperature coefficient, linear	
		Temperature coefficient, curve	
		Relative cell constant	
		Zero point	
		Limit point	
		2-point	
Ca	alibration logbo	ok	73
	Main	input	
	Optio	nal input 1, 2, 3	
In	strument inform	nation	31

6.4 Measuring mode

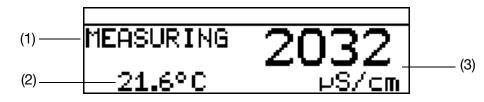
Different display types can be configured, See "Display of measured values STANDARD" page 94.

To return to Measuring mode:

press the Ext key or wait for a "timeout".

Measurements with "out of range" are ignored.

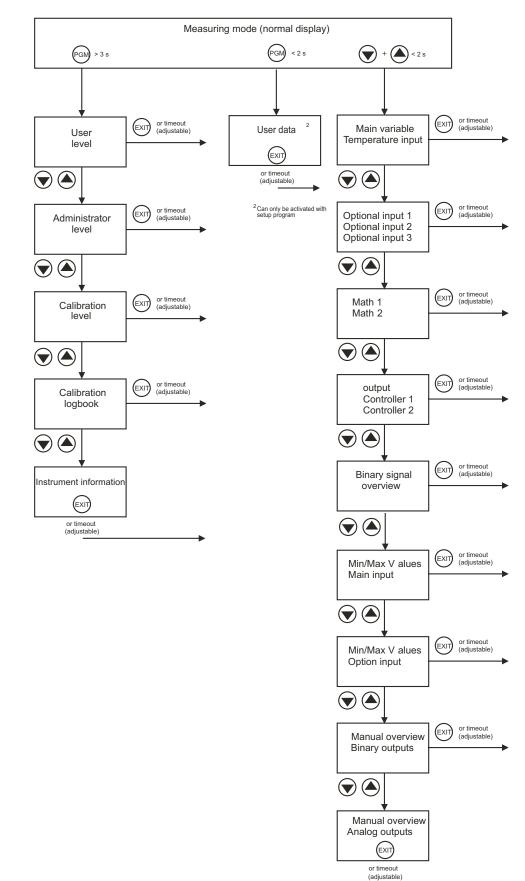
The min./max. value memory can be reset: Administrator level / Delete min/max.

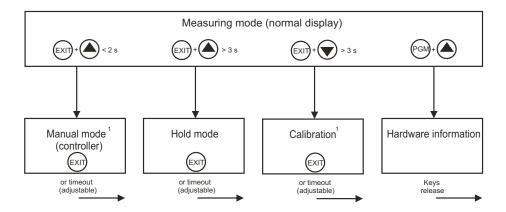

When the basic setting is changed, the min and max values are deleted.

6.4.1 Normal display

Visualization

The following are displayed in Measuring mode:


- Analog input signal
- Unit (for example pH)
- Temperature of the sample medium



- (1) MEASURING -> Measuring mode
- (2) 21.6°C -> Temperature of the sample medium
- (3) 2032 µS/cm -> the measured value calculated from the standard signal at the input

Operation

6.5 Input/output information

¹Only if released

6.5.1 User data

Up to 8 parameters that are frequently changed by the user can be combined in the user level under "User data" (via setup program only).

Activating the display

The instrument is in Measuring mode (normal display)

- **★** Briefly press the PGM key.
- * Select the required "quick setting" with the \blacktriangle and \bigtriangledown keys.

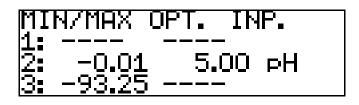
Editing

- **★** Briefly press the PGM key.
- ***** Edit the setting with the \blacktriangle and \bigtriangledown keys.

6.5.2 Min/max values of the main input

MIN.	7MAX MA		
1 2 1	813		-νS/cm
2:	0.81	0.81	mS/cm
T:	<u> 24.3 </u>	<u>74.5</u>	°C

Activating the display

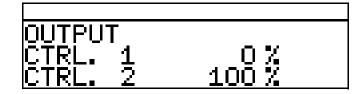

The instrument is in Measuring mode (normal display)

★ Briefly press the ▲ or ▼ key (several times if necessary).
 Minimum and maximum values of the main value "1:" (mS/cm, µS/cm,

MOhm x cm, mV, %, ppm) and the temperature "T:" are displayed.

The extreme values of the main measurement variable and the temperature are **not** mutually assigned (e.g. not 813 μ S/cm at 24.3°C).

6.5.3 Min/max values of the optional inputs

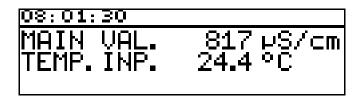


Activating the display

The instrument is in Measuring mode (normal display)

★ Briefly press the a or key (several times if necessary).
 Minimum and maximum values of the optional inputs (1, 2 and 3) are displayed

6.5.4 Output level

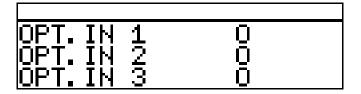


Activating the display

The instrument is in Measuring mode (normal display)

★ Briefly press the ▲ or ▼ key (several times if necessary).
 The current output levels of the controller outputs.

6.5.5 Current values of the main entries

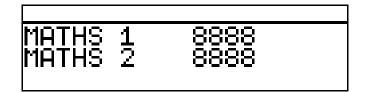


Activating the display

The instrument is in Measuring mode (normal display)

 ★ Briefly press the or ▼ key (several times if necessary). The current values of the main output are displayed.

6.5.6 Curgent values of the optional entries



Activating the display

The instrument is in Measuring mode (normal display)

★ Briefly press the ▲ or ▼ key (several times if necessary).
 The current values of the optional inputs (1, 2 and 3) are displayed

6.5.7 Current values of the math channels



Activating the display

The instrument is in Measuring mode (normal display)

 ★ Briefly press the ▲ or ▼ key (several times if necessary). The current values of the main output are displayed.

6.5.8 States of the binary inputs and outputs

Activating the display

The instrument is in Measuring mode (normal display)

★ Briefly press the ▲ or ▼ key (several times if necessary. The states of binary inputs E1 and E2 and of relays K1 through K8 are displayed. In the example shown here, relay K1 is active.

6 Operation

6.5.9 Manual mode overview

Analog outputs (optional boards)

In this example, analog outputs 2 and 3 are working normally.

Switching outputs (PSU board and optional boards)

In this example relay output 2 is in Manual mode.

The instrument is in "normal display" mode

***** Briefly press the \blacktriangle or \bigtriangledown key (several times if necessary).

Manual mode can only be displayed if at least one output is in Manual mode. For example Administrator level / Parameter level / Binary outputs / Binary output 1 / Manual mode "Active" or "Simulation".

To return to Measuring mode: press the Exit key or wait for a "timeout".

6.5.10 Hardware info

These displays are required for phone support.

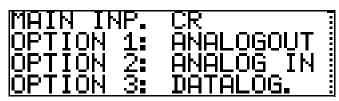
The instrument is in Measuring mode (normal display)

***** Press and hold the \mathbb{P} and \mathbb{A} keys.

Alternating display

OPTION 1	200.01.02
OPTION 2	
OPTION 3	193.02.01
BOOTLOADER	297.00.01

6.5.11 Device info


i

These displays provide an overview of fitted hardware options and the settings of inputs (helpful for troubleshooting, etc.).

- ★ Press the PGM key for longer than 3 seconds.
- ***** Briefly press the \blacktriangle or \bigtriangledown key (several times if necessary).
- * Select Device info

★ Press the PGM keys.

★ Briefly press the ▲ or ▼ key (several times if necessary).
 For further information about the inputs, press the ▲ or ▼ keys.

6.6 User level

All the parameters that the Administrator (See section 6.7 "Administrator level", page 32) has released can be edited at this level. All the other parameters (marked by a key \mathbf{T}) are read only.

- * Press the PGM key for longer than 2 seconds.
- * Select "USER LEVEL".

All possible parameters are accessed below. Depending on the configuration of a specific instrument, some of these parameters may not appear.

6.6.1 Parameters of the User level

See section 16.2 "Parameters of the User level", page 106.

6.7 Administrator level

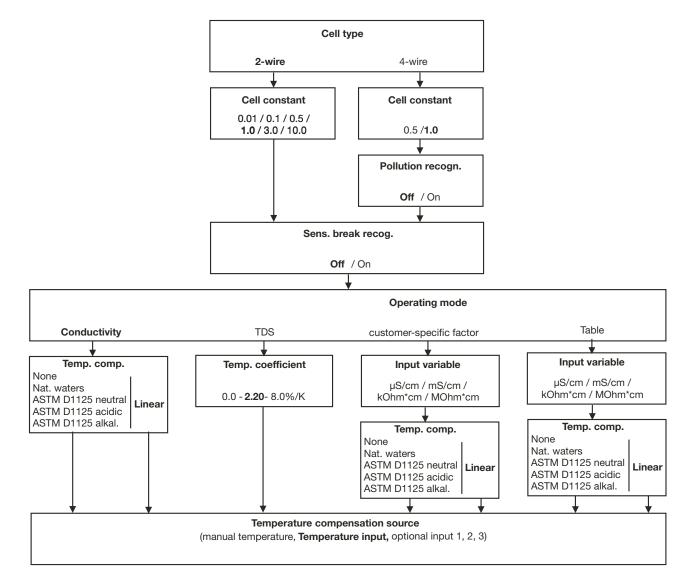
- All the parameters can be edited at this level.
- At this level, it is also possible to define which parameters can be edited by a "normal" user (operator) and which calibrations can be performed.
- To get to the Administrator level, proceed as follows:
- ★ Press the ^{PGM} key for longer than 2 seconds.
- ★ Use the ▼ or ▲ keys to select "ADMINISTR.-LEVEL".
- ***** Use the \mathbf{V} and \mathbf{A} keys to enter the password 300 (factory setting).
- * Confirm the PGM key.

6.7.1 Parameter level

The settings that can be made here are the same as those at the User level, See "User level" page 31. As the operator (user) has administrator rights here, the parameters that are locked in the User level can now also be modified.

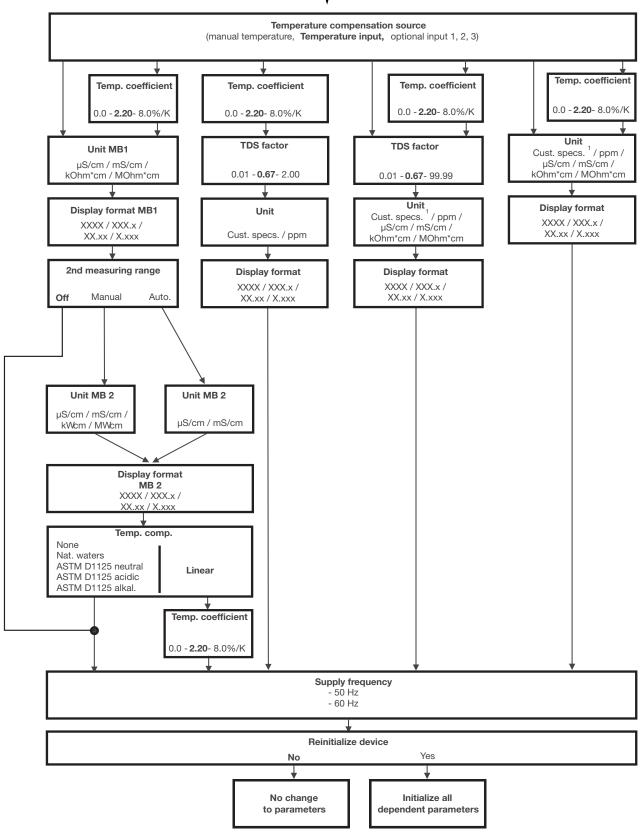
6.7.2 Release level

All parameters can be released (modification possible) or locked (no modification possible) for editing at the User level.


6.7.3 Basic setting

The ACM-1 has a basic setting wizard, to make it easier for the user to configure the extensive setting options of the instrument and to avoid configuration conflicts.

The basic settings are reached via ADMINISTR.-LEVEL / PASSWORD / BASIC SETTING.


All the important settings are systematically polled here. At the end, once a request for conformation has been acknowledged, the instrument is initialized with the new settings. Dependent parameters are checked and adjusted.

Basic setting wizard

Operation

ł

6.7.4 Calibration level

Depending on which operating mode has been configured (in the Basic setting menu), one or more of the following calibration options will be available:

- Cell constant
- Temperature coefficient

6.7.5 Calibration release

Which calibration procedure may be performed directly and which may not can be configured here, See section 8.2.2 "Ways to start the calibration", page 48.

6.7.6 Delete min/max values

If required, the values can be deleted once a request for confirmation has been acknowledged.

See "Min/max values of the main input" page 27 or

See "Min/max values of the optional inputs" page 28.

6.7.7 Delete logbook

The last five calibration processes for each input are archived in the calibration logbook. If a "Datalogger" optional board is fitted, the date and time are also archived.

If necessary the logbook can be deleted after a confirmation prompt.

6.7.8 Delete daily batch

If required, the counter can be deleted once a request for confirmation has been acknowledged.

6.7.9 Delete total batch

If required, the counter can be deleted once a request for confirmation has been acknowledged.

6.8 MANUAL mode / Simulation mode

These functions can be used to set the switching outputs and analog outputs of the instrument manually to a defined state. This facilitates dry startup, troubleshooting and customer service, etc. \blacktriangle

Simulation mode accesses the analog outputs and binary outputs **directly**. When simulation mode has been selected, MANUAL mode is **not** possible!

In MANUAL mode the settings for "higher order controllers" are taken into consideration.

6.8.1 MANUAL mode only via "higher order" controller functions

Select Manual mode

In the factory setting of the instrument the MANUAL mode parameter is locked and can **only be activated by the administrator**!

This parameter must first be released for other users, See "Release level" page 32.

- * Set ADMINISTR.-LEVEL / PARAMETER LEVEL / CONTROLLER / CTRL.SPEC. FUNCT. / MANUAL MODE "Locked, **Coding** or **Switching**.
- Locked = No Manual mode, control is via device.
- Coding = The outputs are active as long as the $\mathbf{\nabla}$ or \mathbf{A} key is pressed.
- Switching = the outputs are active if the **▼** or **▲** key is pressed. If the corresponding key is pressed again, the output becomes inactive again.

Activate Manual mode

The instrument is in Display mode

★ Press the I and ▲ keys for less than 2 seconds. The word MANUAL appears in the status line of the display.

If the E^{IIII} keys (alone) are pressed for longer than 3 seconds, the instrument switches to language selection.

If the \square and \blacksquare keys are pressed for longer than 3 seconds, the instrument goes into HOLD mode.

Then the outputs of the instrument respond according to the default settings.

To exit HOLD mode, press the \square and \blacksquare keys for longer than 3 seconds.

Control is not longer via the instrument. The output level of the controllers is 0%.

Controller 1 is activated by the \blacktriangle key. In this case the output level of controller 1 is 100%.

Controller 2 is activated by the $\boxed{\mathbf{v}}$ key. In this case the output level of controller 2 is 100%.

Deactivation

★ Press the ^{EXIT} key.

Control is once again through the outputs of the instrument. The word MANUAL appears in the status line of the display.

6.8.2 Simulation of binary outputs

Activate simulation

In the factory setting of the instrument the MANUAL mode parameter is set to "No simulation" and can **only be activated by the administrator**! This parameter must first be released for other users, See "Release level" page 32.

If a higher order switching function has been assigned to an output, Simulation mode is not possible for that output.

	 Set ADMINISTR. LEVEL / PARAMETER LEVEL / BINARY OUTPUTS / BINARY OUTPUT1(8) "Manual mode no simulation, Inactive or Active". 		
No simulation	= No Manual mode, control is via device.		
Inactive	 Relay K1 or K2 is de-energized; the word MANUAL appears in the status line of the display 		
Active	 Relay K1 or K2 is energized; the word MANUAL appears in the status line of the display 		

Deactivate Manual mode

No simulation = No Manual mode, control is via device.

When the instrument is in display mode, the word MANUAL disappears from the status line of the display.

6.8.3 Simulation of analog outputs via MANUAL mode

Release and activation

 Select activation of simulation of the actual value output: ADMINISTR.-LEVEL / PARAMETER LEVEL / ANALOG OUTPUTS / ANALOG OUTPUT 1 (2, 3) / SIMULATION / ON.

With "On" the output takes on the value of the "Simulation value" parameter.

When the instrument is in display mode, the word MANUAL appears in the status line of the display.

Deactivation

 ADMINISTR.-LEVEL / PARAMETER LEVEL / ANALOG OUTPUTS / ANALOG OUTPUT 1 (2, 3) / SIMULATION / OFF.

The corresponding output of the instrument works again.

When the instrument is in display mode, the word MANUAL disappears from the status line of the display.

6.9 HOLD mode

In HOLD status the outputs take on the states programmed in the relevant parameter (controller channel, switching output or analog output).

This function can be used to "freeze" switching outputs and the analog outputs of the instrument. This means the current status of the output will be retained even when the measured value changes. Control is not via the instrument.

If MANUAL mode is activated while HOLD mode is activated, MANUAL mode takes precedence and MANUAL then appears in the status line of the display! MANUAL mode can be terminated by pressing the EVT key.

If HOLD mode is still activated (by the binary input or by keyboard), the instrument then returns to HOLD mode!

HOLD mode can be activated by pressing the key or by the binary input.

Activation by pressing key

- ***** Press and hold the \square and \blacksquare keys longer than 3 seconds.
 - Then the outputs of the instrument respond according to the default settings.

The word HOLD appears in the status line of the display.

If the \square and \blacktriangle keys are pressed for less than 3 seconds, the instrument goes into Manual mode.

Then the outputs of the instrument respond according to the default settings.

Pressing a key to deactivate HOLD mode

* Press the \square and \blacksquare keys for longer than 3 seconds.

If the \bowtie and \blacktriangle keys are pressed for less than 3 seconds, the instrument goes into Manual mode.

Then the outputs of the instrument respond according to the default settings.

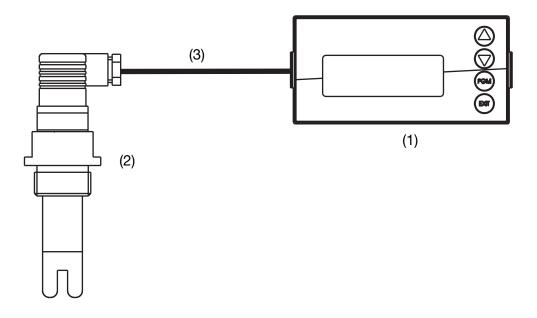
Control is through the outputs of the instrument again. The word MANUAL disappears from the status line of the display.

7 Commissioning

7.1 Getting started

Some suggestions follow for configuring the instrument reliably in little time.

- * Mount the instrument, See section 4 "Mounting", page 13.
- * Install the instrument, See section 5 "Installation", page 14 ff.
- * Call up Administrator level (ADMINISTR. LEVEL).
- * Enter password 0300 (factory setting).
- * Call up PARAMETER LEVEL / DISPLAY / OPERAT. TIMEOUT.
- * Set OPERAT. TIMEOUT to 0 minutes (no timeout).
- * Leave the Display level with "EXIT"
- * Leave the Parameter level with "EXIT"
- Select BASIC SETTING and work through all the menu items, See section 6.7.3 "Basic setting", page 32.
- * Answer "YES" to the "Reinitialize device" query
- * Configure the required additional parameters.
- Calibrate the instrument to the conductivity cell and sample medium, See section 8 "Calibrating a conductivity cell", page 47 or See section 9 "Calibrating a sensor with a standard signal", page 53.


7.2 Setting examples

7.2.1 Conductivity measurement, temperature compensated

Measurement of drinking water.

Layout

- (1) Transmitter/controller type ACM-1
- (2) Conductivity cell on the main board
- (3) Conductivity cable

Electrical connection

See section 5 "Installation", page 14.

Task

Measurement range:	0 - 1.00 mS/cm
Cell constant K:	1.0 1/cm
Output signal:	4 - 20 mA
Temperature measurement	Pt100
Limit monitoring:	Limit function
Limit value 1:	0.80 mS/cm

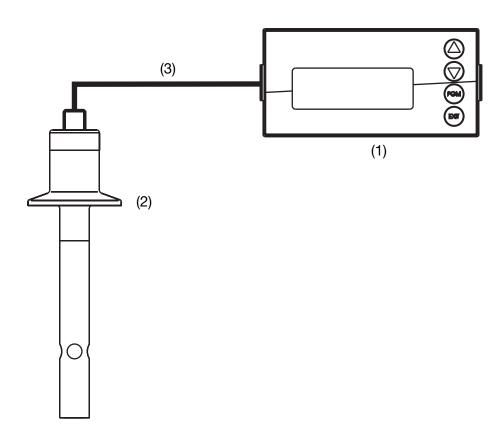
7 Commissioning

Basic setting

Start the basic settingsSee section 6.7.3 "Basic setting", page 32 Diagrammatic overview, See section "Basic setting wizard", page 33.

	Cell type	2-wire	
	Cell constant	1.0	
	Broken sensor detection	Off	
	Operating mode	Conductivity	
	Temperature compensation	Linear	
	Temperature compensation source	Temperature input	
	Temperature coefficient	2.20 (factory setting)	
	Unit	mS/cm	
	Display format	XX.xx	
	2nd measuring range	Off	
	Supply frequency	50 Hz	
	Reinitialize device	Yes	
Temperature input	t		
	Administrator level / Password / Paran	neter level / Temperature input	
	Temperature sensor Pt100		
Analog output			
	Administrator level / Password / Paran output 1	neter level / Analog outputs / Analog	
	Signal source	Main variable	
	Signal type	4 - 20 mA	
	Start of scaling	0.00 mS/cm	
	End of scaling	1.00 mS/cm	

Controller settings


See section 11.6.3 "Controller with limit value function", page 79.

7.2.2 Measurement of ultra-pure water with 2-electrode measuring cell

USP limit monitoring.

Layout

- (1) Transmitter/controller type ACM-1
- (2) Conductivity cell on the main board
- (3) Conductivity cable

Electrical connection

See section 5 "Installation", page 14.

Task

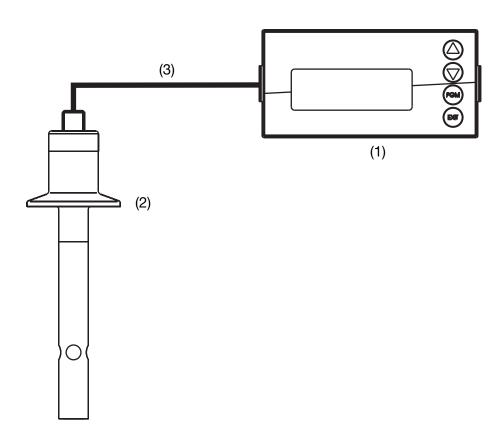
Measurement range:	0 - 2.00 µS/cm
Cell constant K:	0.01 1/cm
Output signal:	4 - 20 mA
Temperature measurement	Pt100
Limit monitoring:	Limit value function
Limit value 1:	USP

7 Commissioning

Basic setting

Start the basic settingsSee section 6.7.3 "Basic setting", page 32 Diagrammatic overview, See section "Basic setting wizard", page 33.

	Cell type	2-wire	
	Cell constant	0.01	
	Broken sensor detection	Off	
	Operating mode	Conductivity	
	Temperature compensation	None	
	Temperature compensation source	Temperature input	
	Unit	μS/cm	
	Display format	X.xxx	
	2nd measuring range	Off	
	Supply frequency	50 Hz	
	Reinitialize device	Yes	
Temperature input	t		
	Administrator level / Password / Paran	neter level / Temperature input	
	Temperature sensor Pt100		
Analog output			
	Administrator level / Password / Paran output 1	neter level / Analog outputs / Analog	
	Signal source	Main variable	
	Signal type	4 - 20 mA	
	Start of scaling	0.00 μS/cm	
	End of scaling	2.00 μS/cm	
Controller setting	S		


See section 11.6.2 "Limit monitoring to USP", page 78.

7.2.3 Measurement of ultra-pure water with 2-electrode measuring cell

Display in MOhm x cm.

Layout

- (1) Transmitter/controller type ACM-1
- (2) Conductivity cell on the main board
- (3) Conductivity cable

Electrical connection

See section 5 "Installation", page 14.

Task

Measurement range:	0 - 20.00 MOhm x cm
Cell constant K:	0.01 1/cm
Output signal:	4 - 20 mA
Temperature measurement	Pt100
Limit monitoring:	Limit value function
Limit value 1:	10.00 MOhm x cm

7 Commissioning

Basic setting

Start the basic settingsSee section 6.7.3 "Basic setting", page 32 Diagrammatic overview, See section "Basic setting wizard", page 33.

	Cell type	2-wire	
	Cell constant	0.01	
	Broken sensor detection	Off	
	Operating mode	Conductivity	
	Temperature compensation	None	
	Temperature compensation source	Temperature input	
	Unit	MOhm x cm	
	Display format	XX.xx	
	2nd measuring range	Off	
	Supply frequency	50 Hz	
	Reinitialize device	Yes	
Temperature input	t		
	Administrator level / Password / Paran	neter level / Temperature input	
	Temperature sensor Pt100		
Analog output			
	Administrator level / Password / Paran output 1	neter level / Analog outputs / Analog	
	Signal source	Main variable	
	Signal type	4 - 20 mA	
	Start of scaling	0.00 MOhm x cm	
	End of scaling	20.00 MOhm x cm	
Controller setting	S		

Controller settings

See section 11.6.1 "Simple limit monitoring", page 78.

8.1 **Notes**

During calibration, relays and analog output signals adopt their configured states!

When is calibration required?

- _ The temperature coefficient of the sample medium must be determined once.
- The cell constant must be calibrated at regular intervals (depending on the sample medium and requirements).

Every successfully completed calibration is documented in the calibration logbook, See section 10 "Calibration logbook", page 73.

8.2 **General information**

The electrical properties of all sensors vary slightly from instance to instance and also change during operation (due to deposits or wear, etc.). This changes the output signal of the sensor.

8.2.1 **Requirements**

- The instrument must be supplied with voltage, See section 5 "Installation", page 14 ff.
- A conductivity cell must be connected to the transmitter.

For a configuration example See section 7.2.1 "Conductivity measurement, temperature compensated", page 41.

A conductivity cell be

- connected directly to the main input or
- connected to the "Analog input (universal)" optional board via a transmitter. _
- "Conductivity" must be configured as operating mode in the basic setting.
- The instrument is in Measuring mode.

8 Calibrating a conductivity cell

8.2.2 Ways to start the calibration

Select the input to which the conductivity cell is connected.

If Calibration level is not released

 Press the edge key for longer than 3 seconds / ADMINISTR.-LEVEL / PASSWORD / CALIBR.-LEVEL / MAIN INPUT or ANALOG INPUT.

If Calibration level is released

- Press the end version was simultaneously / MAIN INPUT or ANALOG INPUT.

If Calibration level is released

- Press the Rew key for longer than 3 seconds / CALIBR.-LEVEL / MAIN INPUT or ANALOG INPUT.

8.2.3 Calibration options

The instrument provides two calibration options for adjusting the ACM-1 to the measuring point:

Calibration of the temperature coefficient

See section 8.4 "Calibrating the relative cell constant", page 51.

Calibration of the cell constant

See "Calibrating the relative cell constant" page 51.

8.3 Calibration of the temperature coefficient of the sample medium

- * Make preparations, See section 8.2 "General information", page 47.
- * Start calibration, See section 8.2.2 "Ways to start the calibration", page 48.
- * Select "TEMP.COEFF. LIN.".

Now the source of temperature acquisition can be selected (manually, or using the temperature input of the PSU board, or the temperature input via the optional board). This source will be active for the duration of the calibration.

An example follows: automatic temperature acquisition using the temperature sensor integrated into the conductivity cell.

The current sensor temperature appears in the display (+ flashing) (1).

★ Enter the required working temperature and confirm your entry with the key.

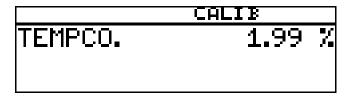
The working temperature must be at least 5°C above or below the reference temperature (25.0°C).

The conductivity (399 μ S/cm) at the current temperature (24.3°C) now appears on the right of the LC display.

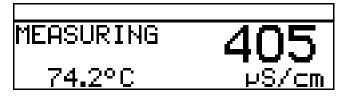
The temperatures T1 (25°C) and T2 (70.0°C) that have yet to be triggered are shown on the left.

***** Heat the sample medium until the working temperature is reached.

During calibration, the rate of temperature change in the measurement solution must not exceed 10°C/min.


Calibration is also possible in the cooling process (with a falling temperature). It starts above the working temperature and ends below the working temperature.

As soon as the temperature of the sample medium exceeds T1 (25°C), this is hidden on the display. The uncompensated conductivity at the current temperature is displayed on the right.


If the temperature of the medium exceeded T2 (73.0 $^{\circ}$ C), the instrument determines the temperature coefficient.

The LC display now shows the determined temperature coefficient as %/K.

 ★ Use the Peul key to accept the temperature coefficient or the Em key to reject it.

The transmitter is in "measuring mode" and displays the compensated conductivity of the solution.

The currently measured conductivity can be coerced manually by pressing the exact the reached precisely.

However, the calibration result incorporates a certain amount of inaccuracy!

8.4 Calibrating the relative cell constant

- * Make preparations, See section 8.2 "General information", page 47.
- * Start calibration, See section 8.2.2 "Ways to start the calibration", page 48.
- * Select the relative cell constant.

 Immerse the conductivity cell in a reference solution with a known conductivity.

The measurement solution must maintain a constant temperature during calibration! The conductivity cell must be kept at a distance of at least 20 mm from the container wall during the calibration and must not be moved!

The current measurement value and the temperature are displayed.

- ★ When the measurement value is steady, press the ready, press the ready, press the ready, the conductivity measurement flashes in the display.
- * Set the value to the actual conductivity.
- Press the PGM key. The relative cell constant determined by the instrument is displayed (as a %).

- ***** Use the rest key to accept the value or the rest key to reject it.
- * The current measurement value and the temperature are displayed.

8 Calibrating a conductivity cell

8.4.1 Entering the cell constant manually

If the exact cell constant is known (for example a measuring cell with the ASTM test report), the value can be entered directly.

ADMINISTR.-LEVEL / PARAMETER LEVEL / INPUT CONDUCT. /REL. CELL CONST.

8.4.2 Cell constants

Two-electrode systems

Cell constant [1/cm]	Setting range of the relative cell constant	Resulting usable range [1/cm]
0.01		0.002 - 0.05
0.1		0.02 - 0.5
1.0	20 - 500%	0.2 - 5
3.0]	0.6 - 15
10.0		2.0 - 50

Four-electrode systems

Cell constant [1/cm]	Setting range of the relative cell constant	Resulting usable range [1/cm]
0.5	20 - 150%	0.1 - 0.75
1.0	20 - 130%	0.2 - 1.5

9.1 General information

i

During calibration, relays and analog output signals adopt their configured states!

Sensors with a standard signal output can only be connected to an "Analog input (universal)" optional board!

The sensors connected to the instrument should be cleaned and the instrument itself calibrated, at regular intervals (subject to the sample medium).

Every successfully completed calibration is documented in the calibration logbook, See section 10 "Calibration logbook", page 73.

9.1.1 Operating modes

The operating mode selection depends on which sensor (transmitter) is connected.

Linear operating mode

For example sensor for free chlorine, redox, pressure, liquid level or humidity

pH operating mode

For example pH sensor

Conductivity operating mode

For example sensor for conductivity, concentration

Customer specs.

For sensors with non-linear characteristics. Up to xx interpolation points can be defined in an instrument table. This allows for an excellent approximation of a non-linear characteristic.

Chlorine, pH and temperature-compensated

Combination of chlorine sensor and pH sensor and temperature sensor. The measured value for chlorine often depends to a great extent on the pH value of the solution.

The chlorine measurement is compensated depending on the pH value in this operating mode. The pH measurement is temperature-compensated

9.1.2 Calibration options

Operating mode	Calibration options				Page	
	1-point	2-point	Limit point	Rel. cell const.	Temp.coeff ic.	
Linear	Х	Х	Х	-	-	55
рН	Х	Х	-	-	-	59
Conductivity	-	-	-	Х	Х	63
Concentration	-	-	-	Х		69
Customer specs.	Due to the table with interpolation points, no calibration is required					
Chlorine, pH-compensated	-	-	X	-	-	71

Different calibration options are available depending on the operating mode.

- With **one-point (offset) calibration**, the zero point of the sensor is calibrated.
- With **two-point calibration**, the zero point and slope of the sensor are calibrated. This is the recommended calibration for most sensors.
- With one-point final value calibration, the slope of the sensor is calibrated. This is the recommended calibration for chlorine sensors, for example.
- Calibration of relative cell constant With conductivity measuring cells only.
- Calibration of the temperature coefficient With conductivity measuring cells only.

9.1.3 Ways to start the calibration

Select the input to which the sensor is connected.

If Calibration level is not released

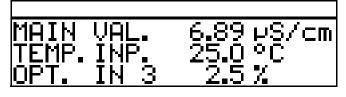
- Press the Rev for longer than 3 seconds / ADMINISTR.-LEVEL / PASSWORD / CALIBR.-LEVEL / OPTION INPUT.

If Calibration level is released

- Press the Imm and I keys simultaneously / OPTION INPUT.

If Calibration level is released

 Press the end key for longer than 3 seconds / CALIBR.-LEVEL / OPTION INPUT.


9.2 Linear operating mode

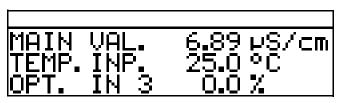
9.2.1 1-point calibration

This example is based on a liquid level measurement (as a %). The input signal is provided by a pressure transmitter.

- The transmitter is in "Measuring mode".

- Now bring the system to a defined state (e.g. when measuring liquid level, empty the container).
- * Start the calibration, See "Ways to start the calibration" page 54.
- * Select the zero point calibration with the Rew key.

* Wait until the display value has stabilized; then press FGM to continue.


Set the displayed value to the required value (usually 0%) with the \blacksquare and \blacksquare keys; then press Point to continue.

The zero point determined by the instrument is displayed.

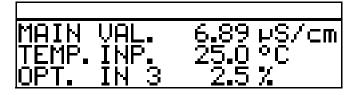
Use the Pem key to accept the value or the Em key to reject it.

The instrument returns to Measuring mode.

Calibration is complete

After rinsing, the sensor can again be used to take measurements.

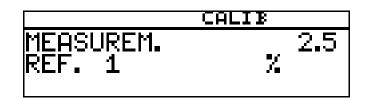
9.2.2 Two-point calibration

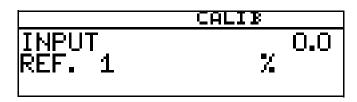


The values determined during calibration (zero point and slope) work out as follows:

Display = <u>Input value</u> + Zero point

This example is based on a liquid level measurement. The input signal is provided by a pressure transmitter.


- The transmitter is in "Measuring mode".


- * Now bring the system to a defined state (e.g. when measuring liquid level, empty the container).
- * Start the calibration, See "Ways to start the calibration" page 54.
- ★ Select the 2-point calibration with the mikey.

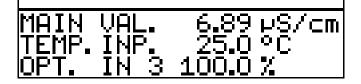
★ Wait until the display value has stabilized; then press to continue.

★ Set the displayed value to the required value (usually 0) with the ▼ and
 ▲ keys; then press [™] to continue.

Now bring the system to a second defined state (e.g. when measuring liquid level, container full).

Wait until the display value has stabilized; then press $\fbox{\sc prod}$ to continue

★ Set the displayed value to "Maximum" (usually 100%) with the ▼ and ▲ keys; then press ™ to continue.

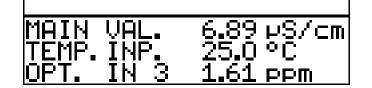


The zero point and slope determined by the instrument are displayed.

★ Use the ^{Pem} key to accept the calibrated values or reject them with the ^{Em} key.

***** The instrument returns to Measuring mode.

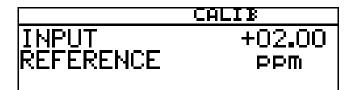
Calibration is complete


After rinsing, the sensor can again be used to take measurements.

9.2.3 Calibration limit point

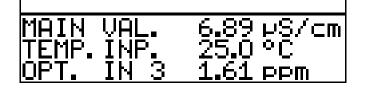
This example is based on a measurement of free chlorine. The input signal is provided by a corresponding transmitter.

- The transmitter is in "Measuring mode".


- * The process must now be brought to the state that is as relevant as possible to the final value (e.g. when measuring chlorine, the required concentration).
- * Start the calibration, See "Ways to start the calibration" page 54.
- * Select the limit point calibration with the EM key.

* Wait until the display value has stabilized; then press M to continue.

Set the displayed value to the measured reference value with the \mathbf{V} or \mathbf{k} keys; then press \mathbf{k} to continue.



The slope determined by the instrument is displayed.

★ Use the Immode key to accept the value or the Immode key to reject it.

***** The instrument returns to Measuring mode.

Calibration is complete

After rinsing, the sensor can again be used to take measurements.

9.3 pH operating mode

9.3.1 Zero point (1-point) calibration

This example is based on a glass combination electrode with a connected two-wire transmitter.

- The transmitter is in "Measuring mode".

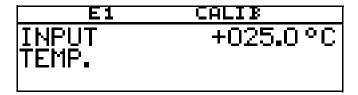
***** Perform calibration as follows.

Zero point (1-point) calibration

- * Make preparations, See section 8.2 "General information", page 47.
- * Start calibration, See section 8.2.2 "Ways to start the calibration", page 48.
- * Select zero point calibration.

* Immerse the combination electrode in a buffer solution with a known pH

value.


* Start the zero point calibration with the key.

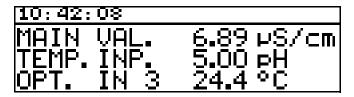
Now the source of temperature acquisition can be selected (manually, or using the temperature input of the PSU board, or the temperature input via the optional board). This source will be active for the duration of the calibration.

An example follows: manual temperature entry.

★ To enter the temperature manually, use the ▼ and ▲ keys to set the calibration solution temperature and confirm your entry with the key.

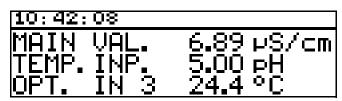
★ Wait until the display value has stabilized; then press M to continue.

★ Set the displayed value to the buffer solution value with the ▼ or ▲ keys; then press ™ to continue.



★ Use the Image key to accept the zero point or the Image key to reject it.

The instrument returns to Measuring mode.

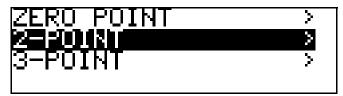


9.3.2 2-point calibration

This example is based on a glass combination electrode with a connected two-wire transmitter.

- The transmitter is in "Measuring mode".

***** Perform calibration as follows:


2-point calibration

The buffer solutions (reference solutions) used for calibration must differ by at least 2 pH!

During the calibration, the temperature of the two buffer solutions must be identical and remain constant!

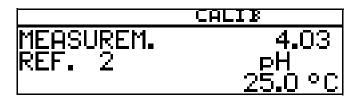
- * Make preparations, See section 8.2 "General information", page 47.
- * Start calibration, See section 8.2.2 "Ways to start the calibration", page 48.
- ***** Select 2-point calibration.

- Immerse the combination electrode in the first buffer solution with the known pH value.
- * Start the two-point calibration with the m key.

Now the source of temperature acquisition can be selected (manually, or using the temperature input of the PSU board, or the temperature input via the optional board). This source will be active for the duration of the calibration.

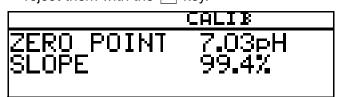
An example follows: manual temperature entry.

★ To enter the temperature manually, use the ▼ and ▲ keys to set the calibration solution temperature and confirm your entry with the m key.


★ Wait until the display value has stabilized; then press to continue.

★ Set the displayed value to the value of the first buffer solution with the and keys; then press to continue.

- * Rinse and dry the pH combination electrode.
- * Immerse the pH combination electrode in the second buffer solution.
- * Wait until the display value has stabilized; then press Minimum to continue.


★ Set the displayed value to the second buffer solution value with the V or

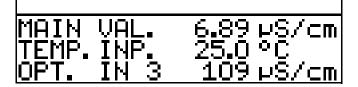
▲ keys; then press I to continue.

The zero point and slope determined by the instrument are displayed.

★ Use the key to accept the calibrated values or reject them with the key.

The instrument returns to Measuring mode.

10:42:08	
MAIN VAL. TEMP.INP.	6.89 µS/cm 5.00 pH
OPT. IN 3	24.4 °C


9.4 Conductivity operating mode

9.4.1 Calibration of the relative cell constant

This example is based on a conductivity cell with a connected two-wire transmitter.

- The transmitter is in "Measuring mode".

- Immerse the conductivity cell in a reference solution with a known conductivity.
- * Start the calibration, See "Ways to start the calibration" page 54.
- * Select REL. CELL CONST.
- ★ Press the PGM key.

* When the measured value is stable, press the Rew key

* The measured conductivity value flashes on the display.

***** Use the \mathbf{V} or \mathbf{A} keys to set the value to the actual conductivity.

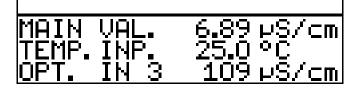
Press the Real key;
 the relative cell constant determined by the instrument is displayed (as a %).

★ Use the PGM key to accept the temperature coefficient or the ENT key to reject it.

The current measurement value and the temperature are displayed.

Calibration is complete

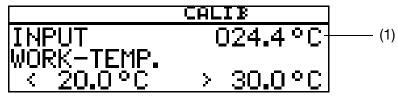
After rinsing, the sensor can again be used to take measurements.


9.4.2 Calibration of the temperature coefficient

Linear temperature coefficient

This example is based on a conductivity cell with a connected two-wire transmitter.

- The transmitter is in "Measuring mode".



* Immerse the conductivity cell in the sample medium.

Start the calibration, See "Ways to start the calibration" page 54. ***** Select "LINEAR TEMP. COEF.".

The current sensor temperature flashes in the display (1).

The working temperature must be at least 5°C above or below the reference temperature (25.0°C).

 Enter the required working temperature and confirm your entry. The LC display now shows the selected working temperature (flashing) (2).

★ Press the ^{PGM} key.

The conductivity (399 μ S/cm) at the current temperature (24.3°C) now appears on the right of the LC display.

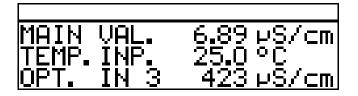
The temperatures T1 (25°C) and T2 (70.0°C) that have yet to be triggered are shown on the left.

- ★ Press the PGM key.
- ***** Heat the sample medium until the working temperature is reached.

During calibration, the rate of temperature change in the measurement solution must not exceed 10° C/min.

Calibration is also possible in the cooling process (with a falling temperature). It starts above the working temperature and ends below the working temperature.

As soon as the temperature of the sample medium exceeds T1 (25°C), this is hidden on the display. The uncompensated conductivity at the current temperature is displayed on the right.



If the temperature of the medium exceeded T2 (73.0°C), the instrument determines the temperature coefficient.

The LC display now shows the determined temperature coefficient as %/K.

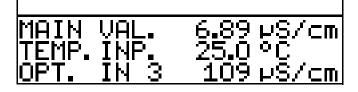
 ★ Use the PGM key to accept the temperature coefficient or the ENT key to reject it.

The transmitter is in "Measuring mode" and displays the compensated conductivity of the solution.

Calibration is complete

After rinsing, the sensor can again be used to take measurements.

With non-linear temperature coefficient (TEMP. COEFF. CURVE)


This example is based on a conductivity cell with a connected two-wire transmitter.

The non-linear temperature coefficient can **only** be calibrated with a rising temperature!

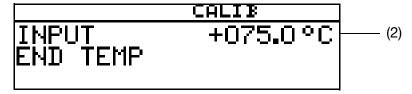
The start temperature **must be below** the configured reference temperature (usually 25°C)!

The "TEMP.COEFF. CURVE" menu item is only displayed if a temperature sensor is connected and "TEMP.COEFF. CURVE" is configured as the type of temperature compensation.

The transmitter is in "Measuring mode".

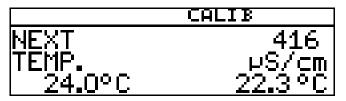
* Immerse the conductivity cell in the sample medium.

Start the calibration, See "Ways to start the calibration" page 54.

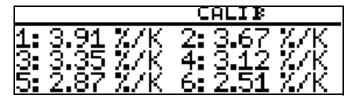

★ Select "TEMP. COEFF. CURVE " and press the Mey.

* Enter the required start temperature (1) for the temp. coef. curve.

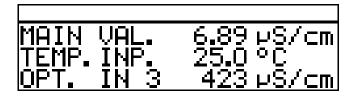
* Enter the required end temperature (2) for the temp. coef. curve.



- * Heat the sample medium continuously
 - (3) the current uncompensated conductivity
 - (4) the current temperature of the sample medium
 - (5) the first target temperature


During calibration, the rate of temperature change in the measurement solution must not exceed 10°C/min.

During the calibration process, the instrument displays values for the following five temperature interpolation points.


The end temperature has been reached

Use the rest key to accept the temperature coefficients or the result key to reject the calibration result.

The LC display now shows the determined temperature coefficients as %/K.

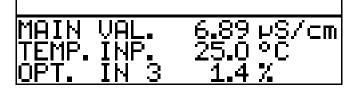
 ★ Use the Prom key to accept the temperature coefficients or the Ext key to reject the values.

The transmitter is in "Measuring mode" and displays the compensated conductivity of the solution.

Calibration is complete

After rinsing, the sensor can again be used to take measurements.

9.5 Concentration operating mode


9.5.1 Calibration of the relative cell constant

This example is based on a conductivity cell with a connected two-wire transmitter.

The conductivity of a caustic solution is converted into a concentration value [%] by the instrument.

- The transmitter is in "Measuring mode".

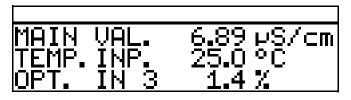
- Immerse the conductivity cell in a sample medium with a known conductivity.
- * Start the calibration, See "Ways to start the calibration" page 54.
- ★ Press the Main key.

The measured conductivity value is displayed.

* Wait until the measurement value has stabilized.

★ Press the Mey.

***** Use the $\mathbf{\nabla}$ and $\mathbf{\Delta}$ keys to set the value to the actual conductivity.



* Press the PGM key; the relative cell constant determined by the instrument is

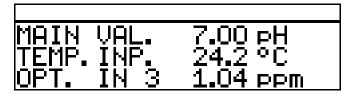
displayed (as a %).

★ Use the FGM key to accept the relative cell constant or the EXIT key to reject the values.

The transmitter is in "Measuring mode" and displays the compensated conductivity of the solution.

Calibration is complete

After rinsing, the sensor can again be used to take measurements.


9.6 Chlorine measurement operating mode, pH-compensated

9.6.1 Final value calibration

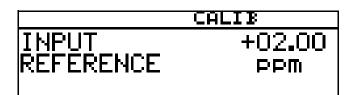
The pH signal and temperature signal are supplied via the main input, the chlorine signal (standard signal) via the optional input.

- The transmitter is in "Measuring mode".

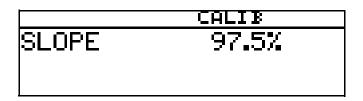
Calibrate pH sensor

* Perform calibration, See "pH operating mode" page 59.

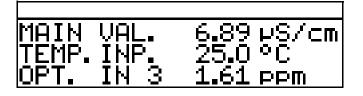
Calibrate chlorine sensor


- The process must now be brought to the state that is as relevant as possible to the final value (e.g. when measuring chlorine, the required concentration).
- * Start the calibration, See "Ways to start the calibration" page 54.
- ★ Select the limit point calibration with the ^m key.

* Wait until the display value has stabilized; then press Min to continue.



Set the displayed value to the measured reference value with the \mathbf{V} or \mathbf{k} keys; then press \mathbf{R} to continue.



The slope determined by the instrument is displayed.

★ Use the Image key to accept the value or the Image key to reject it.

The instrument returns to Measuring mode.

Calibration is complete

After rinsing, the sensor can again be used to take measurements.

10.1 General information

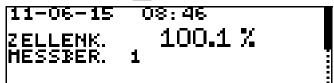
The characteristic data for the last 5 successful calibration processed are documented in the calibration logbook.

Calling up

The instrument is in Measuring mode. ***** Press the Regime key for longer than 3 seconds.

Select input

Briefly press the read key.


MAIN	INPUT	×
OPT.	INPUT 1	<u> </u>
OPT.	INPUT 2	2 >
OPT.	INPUT 3	} >

Most recent successful calibration

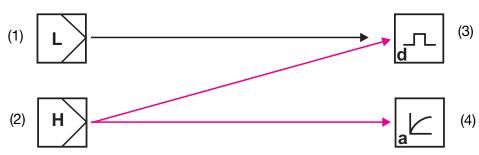
The "time stamp" in the following screen printouts (top left, for example 11-06-06 12:02) only appears if optional slot 3 is fitted with the "Datalogger with interface RS485"!

★ Briefly press the ▼ key.

Next most recent successful calibration

* Briefly press the ▼ key.
 11-06-14 14:57
 TK 2.96 %/K
 TEHP. 1 24.4 °C
 TEHP. 2 73.9 °C

11.1 General information



Apart from faulty installation, incorrect settings on the instrument may also affect the proper functioning of the subsequent process or lead to damage. You should therefore always provide safety equipment that is independent of the instrument and it should only be possible for qualified personnel to make settings.

11.2 Controller functions

"Software" control functions are assigned to "Hardware" outputs for this instrument.

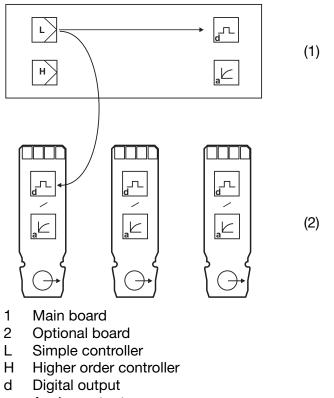
- 1 Software controller for "simple" switching functions (e.g. alarm control)
- 2 Software controller for "higher order" switching functions (e.g. PID controller)
- 3 "Switching" hardware output (e.g. relay)
- 3 "Continuous" hardware output (analog output)

11.2.1 Simple switching functions

Up to four switching functions can be set (limit value 1, 2, 3, 4) ADMINISTR.-LEVEL / PARAMETER LEVEL / LIMIT VALUE CONTR. / LIMIT VALUE x.

11.2.2 Higher order switching functions (PID)

Higher order switching functions are configured at the parameter level via the parameters of "Controller 1 or 2".

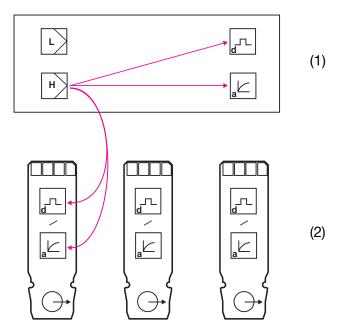

ADMINISTR.-LEVEL / PARAMETER LEVEL / CONTROLLER / CONTROLLER 1(2) / CONFIGURATION / CONTROLLER TYPE / e.g. PULSE LENGTHS

11.2.3 Typical operator level parameters

Binary outputs	Explanation		
Signal source			
No signal	No switching function desired		
Limit control 1 to 4	"Simple" switching functions		
Alarm function (AF1)	Л		
Alarm function (AF2)	了 了		
Alarm function (AF7)			
Alarm function (AF8)			
Controller 1(2)	"Higher order" switching functions		
Limit value			
Pulse width			
Pulse frequency			
Steady			
Modulating			

11.3 Software controllers and outputs

Simple controller functions


a Analog output

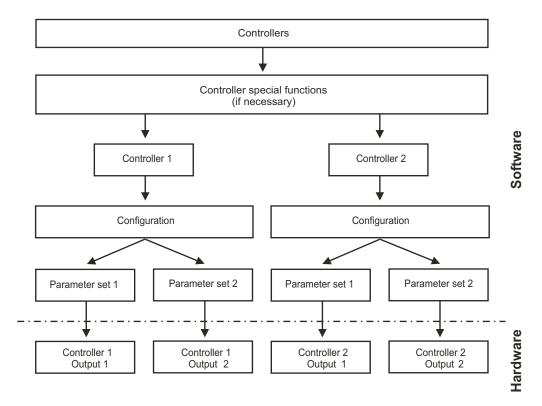
If "Simple controller functions" have been configured, only the digital outputs can be controlled!

The operator must configure which of the digital outputs will be controlled - the main board or optional board 1, 2 or 3 $\,$

Higher order controller functions

- 1 Main board
- 2 Optional board
- L Simple controller
- H Higher order controller
- d Digital output
- a Analog output

If "higher order controller functions" have been configured, both the digital outputs and the analog outputs can be controlled.


The operator must configure which of the outputs will be controlled - the main board or optional board 1, 2 or 3

Additional explanations, See section 16.1 "Glossary", page 94.

11.4 Configuration of higher order controllers

11.4.1 Structure

11.5 Parameter sets

Different process steps may require different controller settings. The instrument offers the option of creating two parameter sets and then switching between them by means of a binary input.

Defining a parameter set

ADMINISTR.-LEVEL / PARAMETER LEVEL / CONTROLLER / 1(2) / PARAMETER SET 1(2) See "Controller" page 109.

Configuring parameter set switchover

ADMINISTR.-LEVEL / PARAMETER LEVEL / BINARY INPUTS / BINARY INPUT 1(2) / PARAMET. SWITCHOVER

See "Binary inputs" page 109.

11 Controller

11.6 Sample configurations

11.6.1 Simple limit monitoring

Configuration

Limit monitoring	
Limit value 1	
Signal source:	Main value
Switching function:	Alarm function (AF8)
Switching point:	10.00 Mom x cm
Hysteresis:	0.50 Mom x cm

Configuration of binary output, e.g. relay)

Binary outputs	
Binary output 1	
Signal source:	Limit monitoring 1
At calibration:	Standard operation
Error:	Inactive
HOLD mode:	Frozen
Turn-on delay:	0 seconds
Turn-off delay:	0 seconds
Wiper time:	0 seconds
Manual mode:	No simulation

11.6.2 Limit monitoring to USP

Configuration

Limit monitoring	
Limit value 1	
Signal source:	Main value
Switching function:	USP
Switching point:	derived automatically from table, See "Excerpt from USP <645>" page 101
Hysteresis	0.50 μS/cm

Configuration of binary output, e.g. relay)

Binary outputs Binary output 1 Signal source: At calibration:

Limit monitoring 1 Standard operation

Error:	Inactive
HOLD mode:	Frozen
Turn-on delay:	0 seconds
Turn-off delay:	0 seconds
Wiper time:	0 seconds
Manual mode:	No simulation

11.6.3 Controller with limit value function

Configuration of software controllers

Controller 1	
Configuration	
Controller type:	Pulse value
Controller actual value:	Main variable
Stroke retransmission:	No signal
Additive disturbance:	No signal
Multiplicative disturbance:	No signal
Min./max. contact:	Max. contact
Inactive/active contact:	Active contact
HOLD mode	0 %
HOLD output:	0 %
Error:	0 %
Alarm control:	Off
Parameter set 1	
Min. setpoint:	As required
Max. setpoint:	As required
Setpoint:	0.80 mS/cm
Hysteresis:	As required
On-delay:	As required
Delayed release:	As required
Alarm delay:	As required

Configuration of binary output, e.g. relay) Binary outputs

Binary outputs Binary output 1

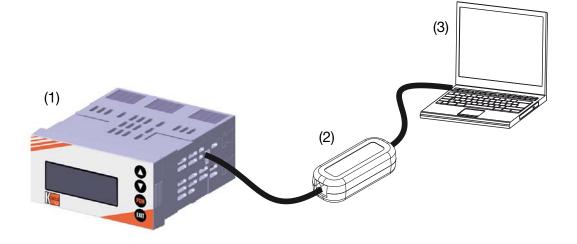
Signal source:

Controller 1 output 1

¹ This parameter only appears if "Separate controllers" has been configured in special controller functions.

12 Setup program

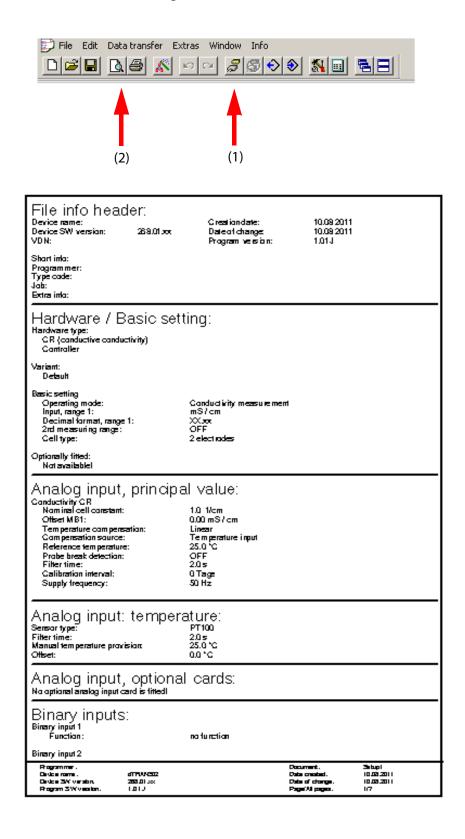
12.1 Configurable parameters


Both the setup program (ACM-Soft) and the PC interface cable with USB/ TTL converter (ACM-Int) are available as options and provide a convenient way to adapt the transmitter to meet requirements:

- Setting the measuring range.
- Setting the behavior of outputs wh en the measuring range is exceeded.
- Setting the functions of switching outputs K1 to K8.
- Setting the functions of the binary inputs.
- Setting a customized characteristic
- etc.

Data can only be transferred from or to the transmitter if it is supplied with voltage, See section 5 "Installation", page 14ff.

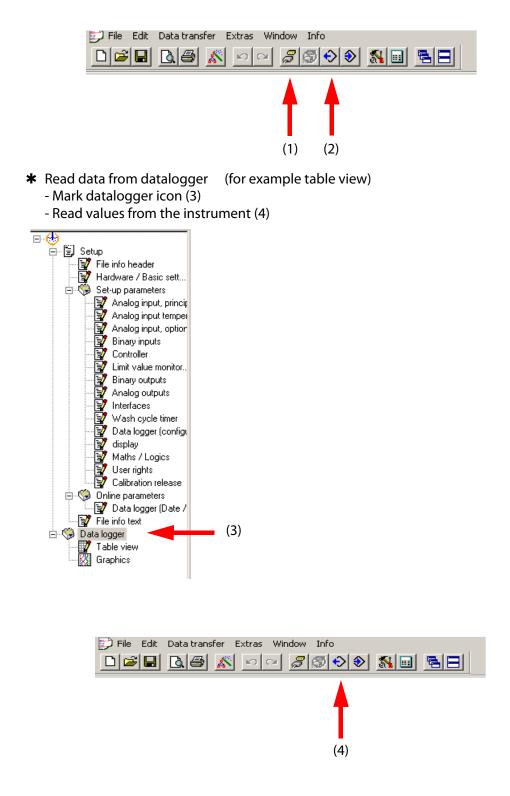
Connection



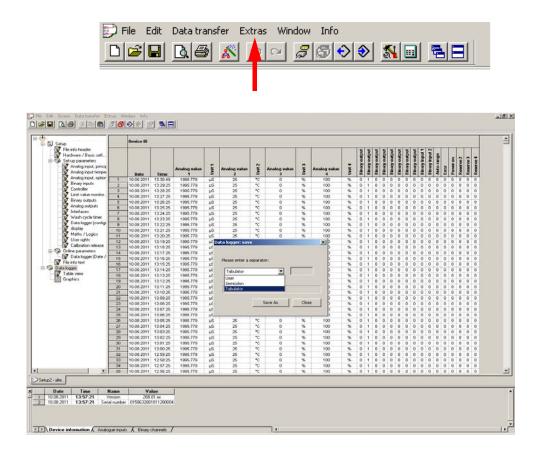
- (1) ACM-1
- (2) PC interface cable with USB/TTL converter, Sales no.: ACM-Int
- (3) PC or notebook

12.2 Documenting the instrument configuration

- * Start the setup program
- * Establish the connection to the instrument (1).


Read the instrument configuration (2).

12 Setup program


12.3 Special features for "Datalogger"

- * Start the setup program
- * Establish the connection to the instrument (1).
- ***** Read the instrument configuration (2).

Selection of data to be transmitted	×
Data to be transmitted	_
Setup data	
☑ Data logger	
Select all Cancel selection OK Cancel	

* Export data (for processing in an external program).

13 Eliminating faults and malfunctions

Problem	Possible cause	Action		
No measurement display or current output	There is no supply voltage	Check the power supply		
Measurement display 0000 or current output 4 mA	Sensor not immersed in medium; level in container too low	Top up the container		
	Flow-through fitting is blocked	Clean the flow-through fitting		
	Sensor faulty	Replace the sensor		
Incorrect or	Sensor faulty	Replace the sensor		
fluctuating measurement display	Sensor positioning incorrect	Choose another installation location		
	Air bubbles	Optimize assembly		
MAIN VALUE INPUT OVERRANGE	Measurement overrange			
MAIN VALUE INPUT UNDERRANGE	Measurement underrange	Choose a suitable measuring		
ALARH MEASURING 8888 27.4°C PH	Main input: Measurement range "out of range"	range		
MAIN INPUT COMPENS. RANGE	Compensation range has been left			
TEMPERATURE INPUT OVERRANGE	Measurement overrange			
TEMPERATURE INPUT UNDERRANGE	Measurement underrange	Choose a suitable measuring range		
ALARH MEASURING 8888 8888 °C PH	Temperature input: Measurement range "out of range"			
OPTION INPUT 1. COMPENS. RANGE	Compensation range has been left	Choose a suitable measuring		
OPTION INPUT 1. OUT OF RANGE	Temperature input: Measurement range "out of range"	range		
Coating CONTAMINATED		Clean electrodes. Replace conductivity cell.		

13 Eliminating faults and malfunctions

DEPENDENT PARAME- TERS ADJUSTED	Configuration change	OK	
DATALOGGER IS DELETED	Configuration change	ОК	
LEVEL LOCKED	Inhibit via binary contact	Check configuration and unlock if necessary	
PARAMETER LOCKED	Do not release	If appropriate release in the release level	
WRONG PASSWORD		Test	
KEYPAD LOCKED	Inhibit via binary contact	Check configuration and unlock if necessary	
CONFIGURATION RE-ESTABLISHED	Cancel in basic setting	ОК	
ERROR PROFIBUS		Check hardware	
UNZULÄSSIGE HARDWARE-BESTÜCKUNG		Check fitting, adjust if necessary	
ERROR TIMER TIME RE-ADJUSTMENT	Instrument had no power supply for a very long time	Establish power supply Set the datalogger time	

14 Technical data

Inputs (main board)

Main input	Measuring range/control	Accuracy	Effect of temperature
-	range	-	
μS/cm	0.000 - 9.999	\leq 0.6% of range + 0.3 µS x cell	0.2%/10K
	00.00 - 99.99	constant (K)	
	000.0 - 999.9		
	0000 - 9999		
mS/cm	0.000 - 9.999	\leq 0.6% of range + 0.3 µS x cell	0.2%/10K
	00.00 - 99.99	constant (K)	
	000.0 - 999.9		
	0000 - 9999		
kΩ x cm	0.000 - 9.999	\leq 0.6% of range + 0.3 µS x cell	0.2%/10K
	00.00 - 99.99	constant (K)	
	000.0 - 999.9		
	0000 - 9999		
MΩ x cm	0.000 - 9.999	\leq 0.6% of range + 0.3 µS x cell	0.2%/10K
	00.00 - 99.99	constant (K)	
	000.0 - 999.9		
	0000 - 9999		
Secondary input			
Temperature Pt100/1000	-50 - 250°C ¹	≤ 0.25% of range	0.2%/10K
Temperature NTC/PTC	0.1 - 30 kΩ	≤ 1.5% of range	0.2%/10K
	Entry via table		
	with 20 value pairs		
Standard signal	0(4) - 20 mA or 0 - 10 V	0.25% of range	0.2%/10K
Resistance transmitter	Minimum: 100 Ω	+/- 5 Ω	0.1%/10K
	Maximum: 3 kΩ		

¹ Selectable in °F.

Resistance thermometer inputs (optional board)

Designation	Connection type	Measuring range	Measuring accuracy		Effect of ambient
			3-wire/4-wire	2-wire	temperature
Pt100 DIN EN 60751 (factory-set)	2-wire/3-wire 4-wire	-200 - +850°C	≤ 0.05%	≤ 0.4%	50 ppm/K
Pt1000 DIN EN 60751 (factory-set)	2-wire/3-wire 4-wire	-200 - +850°C	≤ 0.1%	≤ 0.2%	50 ppm/K
Sensor lead resistance	Maximum 30 Ω per	Maximum 30 Ω per line with three- and four-wire circuit			
Measurement current	approx. 250 µA	approx. 250 μA			
Lead compensation		Not required for three- and four-wire circuit. With a 2-wire circuit, lead resistance can be compensated in the software by correcting the process value.			

Standard signals inputs (optional board)

Designation	Measuring range	Measuring accuracy	Ambient temperature effect
Voltage	0(2) - 10 V	≤ 0.05%	100 ppm/K
Electrical current	0 - 1 V Input resistance $R_E > 100 \text{ k}\Omega$	≤ 0.05%	100 ppm/K
Resistance transmitter	Minimum: 100Ω Maximum: $4 k\Omega$	+/-4Ω	100 ppm/K

Temperature compensation

Type of compensation	Range1	
Linear 0 - 8%/K	-10 - 160°C	
ASTM D1125 - 95 (ultra-pure water)	0 - 100°C	
Natural waters (ISO 7888)	0 - 36°C	
Reference temperature		
Adjustable from 15 - 30°C; preset to 25°C (default)		

¹ Note the sensor operating temperature range!

Measuring circuit monitoring

Inputs		Underrange/ overrange	Short circuit	Broken lead
Conductivi	ty	Yes	Depends on measuring range	e Depends on measuring range
Temperatu	re	Yes	Yes	Yes
Voltage	2 - 10 V 2 - 10 V	Yes Yes	Yes No	Yes No
Current	4 - 20 mA 0 - 20 mA	Yes Yes	Yes No	Yes No
Resistance	transmitter	No	No	Yes

Two-electrode systems

Cell constant [1/cm]	Setting range of the relative cell constant	Resulting usable range [1/cm]
0.01		0.002 - 0.05
0.1		0.02 - 0.5
1.0	20 0 500%	0.2 - 5
3.0		0.6 - 15
10.0		2.0 - 50

Four-electrode systems

Cell constant	Setting range of the	Resulting
[1/cm]	relative cell constant	usable range [1/cm]
0.5	20 - 150%	0.1 - 0.75
1.0	20 - 13070	0.2 - 1.5

Binary input

Activation	Floating contact is open: Floating contact is closed:	function is not active function is active
Function	Key lock, manual mode, HOLD, HOLD inv level lock, reset partial quantity, reset tota	rerse, alarm suppression, freeze measured value, I quantity, parameter set switchover

Controller

Controller type	Limit comparators, limit controllers, pulse length controllers, pulse frequency controllers, modulating controllers, continuous controllers
Controller structure	P / PI / PD / PID

Outputs

Relay (changeover) - Contact rating - Contact service life	PSU board	5 A at 240 VAC resistive load 350,000 operations at nominal load/750,000 operations at 1 A
Supply voltage for 2-wire transmitter	PSU board	Electrically isolated, non-controlled DC 17 V at 20 mA, open-circuit voltage approx. DC 25 V
Power supply for inductive proximity switch	Optional board	DC 12 V; 10 mA
Relay (changeover) - Contact rating - Contact service life	Optional board	8 A at AC 240 V resistive load 100,000 operations at nominal load/350,000 operations at 3A
Relay SPST (normally open) - Contact rating - Contact service life	Optional board	3A at 240VAC resistive load 350,000 operations at nominal load/900,000 operations at 1A

14 Technical data

Semiconductor relay - Contact rating - Protective circuit	Optional board	1 A at 240 V Varistor
Semiconductor switch (photo MOS)	Optional board	$\begin{array}{l} U \leq 50 \text{ V AC/DC} \\ I \leq 200 \text{ mA} \end{array}$
Voltage - Output signals - Load resistance - Accuracy	Optional board	0 - 10 V / 2 - 10 V $R_{load} \ge 500 \Omega$ $\le 0.5\%$
Electrical current - Output signals - Load resistance - Accuracy	Optional board	0 - 20 mA / 4 - 20 mA R _{load} \leq 500 Ω \leq 0.5%

Display

	Туре	LC graphic display, blue with background lighting, 122 x 32 pixels
--	------	--

Electrical data

Supply voltage (switch-mode PSU)	AC 110 - 240 V -15/+10%; 48 - 63 Hz or
	AC/DC 20-30 V; 48 - 63 Hz
Electrical safety	to DIN EN 61010, Part 1
	overvoltage category II, pollution degree 2
Power consumption	Max. 13 VA
Data backup	EEPROM
Electrical connection	On the back via screw terminals, conductor cross-section up to max. 2.5 mm ²
Electromagnetic Compatibility (EMC)	DIN EN 61326-1
- Interference emission	Class A
- Immunity to interference	to industrial requirements

Enclosure

Enclosure type	Plastic enclosure for panel mounting to DIN IEC 61554, Aluminium field housing, orange
Depth behind panel	90 mm (panel mounting), 137 mm (field housing)
Ambient temperature Storage temperature	-5+55°C (panel mounting), -5+50°C (field housing) -30+70°C
Climatic rating	Rel. humidity ≤90% annual mean, no condensation
Operating position	Horizontal
Protection	to DIN EN 60529, front IP65, rear IP20
Weight (fully fitted)	about 380 g (panel mounting), about 1480 g (field housing)

Interface

Modbus				
Interface type	RS422/RS485			
Protocol	Modbus, Modbus Integer			
Baud rate	9600. 19200, 38400			
Device address	0 - 255			
Max. number of nodes	32			
PROFIBUS-DP				
Device address	0 - 255			

Caution:

The instrument **must** be de-energized on the input and output sides! Optional boards must only be retrofitted by qualified specialists.

ESD:

Optional boards can be damaged be electrostatic discharge. You must therefore prevent electrostatic charges from accumulating during installation and removal. Optional boards should be retrofitted at a grounded workstation.

15.1 Identifying an optional board

The packaging of the optional board is identified by a sales number.

Optional board	Code	Sales No.	Board view
Analog input (universal)	1	APM-100001	
Relay (1 x changeover)	2	APM-100002	
Relay (2 x NO)	3	APM-100003	
This board must only be inserted in optional slot 1 or 3!			
Analog output	4	APM-100004	
Two MosFET semiconductor switch	5	APM-100005	

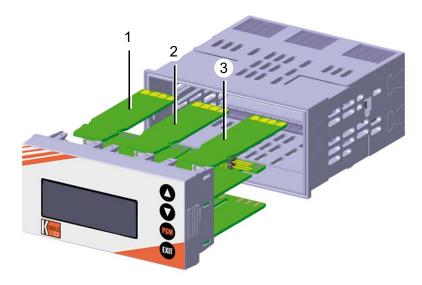
15 Retrofitting optional boards

Optional board	Code	Sales No.	Board view
Semiconductor relay 1 A	6	APM-100006	
Supply voltage output +/- 5 V DC (e.g. for ISFET)	7	APM-100007	
Supply voltage output 12 V DC (e.g. for inductive proximity switch)	8	APM-100008	
Interface - RS422/485 This board must only be inserted in optional slot 3!	10	APM-10000S	
Datalogger with interface RS422/485 and real-time clock This board must only be inserted in optional slot 3!	11	APM-10000D	
Profibus-DP interface This board must only be inserted in optional slot 3!	12	APM-10000P	

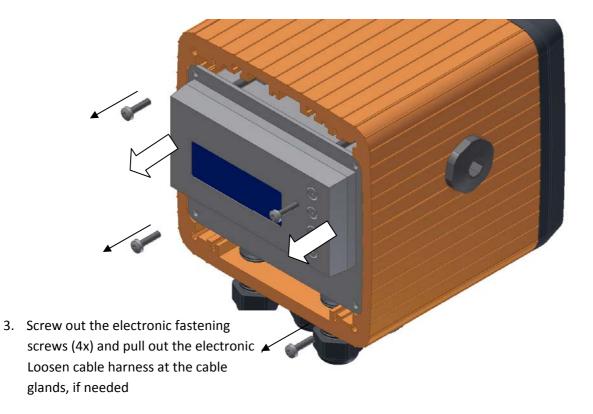
Note:

The optional boards detected by the instrument are displayed in "Device information" (See section 6.5.11 "Device info", page 31).

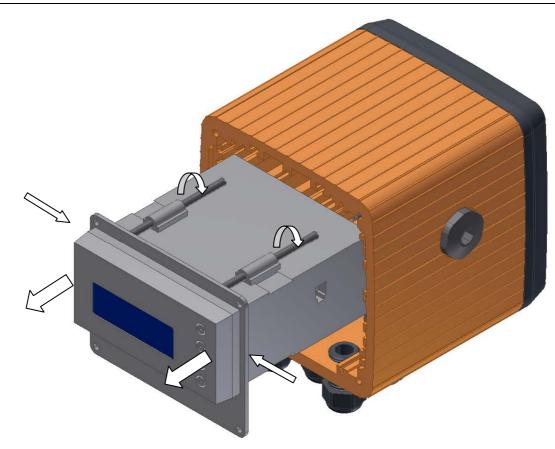
15.2 Removing a plug-in module


(1) Squeeze the front panel together by the left and right sides and remove the plug-in module.

15.3 Inserting a plug-in module

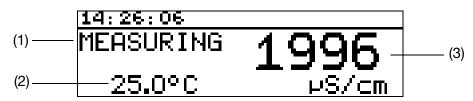

Caution:

No "3" relays (2 x SPST/normally open) may be inserted in slot 2!



- (1) Slot 1 for optional board
- (2) Slot 2 for optional board
- (3) Slot 3 for optional board
- (1) Push the optional board into the slot until it locks in place.
- (2) Push the device plug-in into the enclosure until it locks in place.

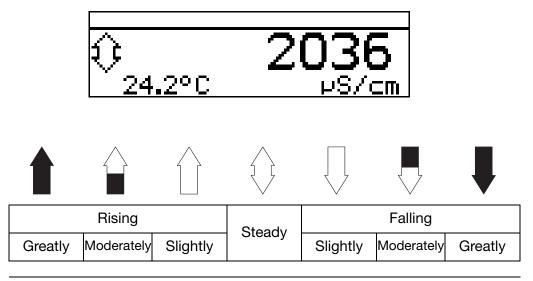
15 Retrofitting optional boards


 Loosen the clamp screws (4x), push back the front plate and press together the latching surface of electronic module from left and right. Pull out the electronic insert from the electronic housing.

5. The optional boards can now be installed in the electronic. The assembly takes place in reverse order. While mounting the front cover on the housing profile, care should be taken to correctly position the gasket in the groove.

16.1 Glossary

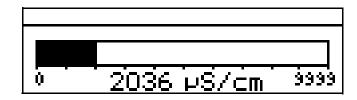
Display of measured values STANDARD


The measurement value, measurement variable and temperature of the measuring material are shown in standard display.

- (1) Operating mode
- (2) Display bottom (temperature input)
- (3) Display top (analog input measurement value)

Display of measured values TENDENCY

The operator can quickly see the direction in which the measurement is changing.



The measurement tendency (trend) is calculated over the last 10 measurement values.

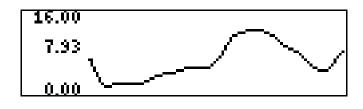
So with a sampling interval of 500 ms, the last 5 seconds are considered.

Display of measured values BARGRAPH

- Values of the main inputs, input options or math channels (signal source) can be represented as a variable bar (a bar graph).

Scaling the bar

- * Activate "BARGRAPH" as the display of measured values.
- ★ Select "SCALE START" with **▼**.
- * Confirm the selection with PGM.
- ***** Use \blacksquare and \blacksquare to enter the lower limit of the range to be displayed.
- ★ Confirm the selection with PGM.
- ★ Select "SCALE END" with **▼**.
- ***** Use \mathbf{V} or \mathbf{A} to enter the upper limit of the range to be displayed.
- ★ Confirm the selection with PGM.



To return to Measuring mode: Press the key repeatedly or wait for a "timeout".

Display of measured values TREND CHART

Values of the main inputs, input options or math channels (signal source) can be represented as a graph.

The current values appear to the right on the screen.

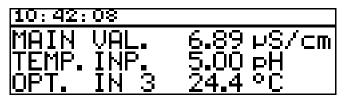
Scaling the display

- * Activate "TREND CHART" as the display of measured values.
- ★ Select "SCALE START" with **▼**.
- ★ Confirm the selection with PGM.
- ***** Use \blacksquare and \blacksquare to enter the lower limit of the range to be displayed.

- ★ Confirm the selection with PGM.
- ★ Select "SCALE END" with **▼**.
- ***** Use \blacksquare or \blacksquare to enter the upper limit of the range to be displayed.
- * Confirm the selection with \square .

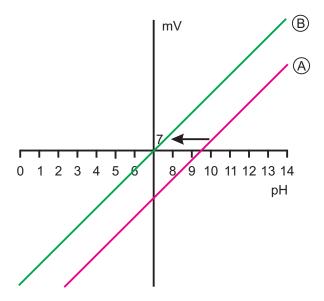
To return to Measuring mode: Press the x repeatedly or wait for a "timeout".

Display of measured values LARGE DISPLAY


Values of the main inputs, input options or math channels (signal source) can be displayed in large format.

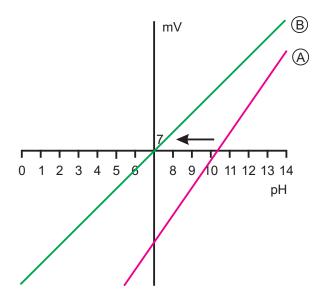
Display of measured values 3 MEAS. VALUES

Three values of the main inputs, input options or math channels (signal source) can be displayed simultaneously.


The position of the value to be displayed can be set to "Top", "Center" or "Bottom".

Relative cell constant

Mechanical or chemical effects can change the electrical properties of a conductivity cell. This will result in a measurement error. This deviation (and thus the measurement error as well) can be compensated for by adjusting the relative cell constant in the transmitter. The relative cell constant defines the deviation of the actual cell constant of the measuring cell from its nominal value.


Zero point (1-point) calibration

- With one-point offset calibration, the zero point of the pH combination electrode is calculated, See section 8.4 "Calibrating the relative cell constant", page 51.

Recommended only for special applications, such as ultra-pure water.

2-point calibration

- With two-point calibration, the zero point and slope of the combination electrode are calibrated.

This is the recommended calibration for most sensors.

Temperature compensation (conductivity or resistance)

The conductivity of a measurement solution is temperature-dependent (the conductivity of a solution rises as the temperature increases). The dependency of conductivity and temperature describes the **temperature coefficient** of the measurement solution. As conductivity is not always measured for the reference temperature, automatic temperature compensation is integrated in

this instrument. The transmitter uses the temperature coefficient to calculate the conductivity that would exist for a reference temperature from the current conductivity and the current temperature. This is then displayed. This process is called temperature compensation. Modern transmitters offer different ways to perform this temperature compensation.

- Linear compensation (constant temperature coefficient).

This type of compensation can be applied to many kinds of normal water, with acceptable accuracy. The temperature coefficient used is then approx. 2.2%/°C

- Natural water (EN27888 or ISO 7888).

In this case, so-called non-linear temperature compensation is used. According to the standard cited above, the relevant type of compensation can be applied to natural groundwater, spring water and surface water. The definition range for the water temperature is as follows: $0^{\circ}C \leq T < 36^{\circ}C$

Conductivity of the water is compensated in the range from 0°C to 36°C.

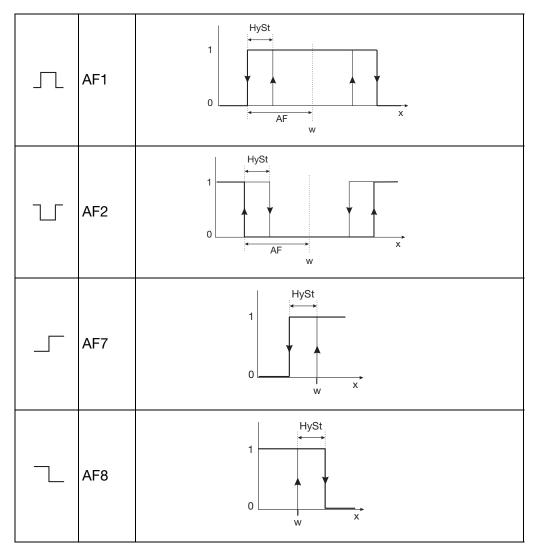
- ASTM1125-95.

This type of temperature compensation is used in measurements of ultrapure water. The highly non-linear nature of the temperature dependency for neutral, acidic and alkaline impurities is taken into consideration in accordance with the standard.

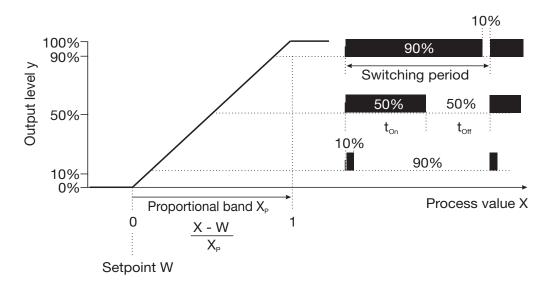
The definition range for the water temperature is as follows: $0^{\circ}C < T < 100^{\circ}C$.

Conductivity of the water is compensated in the range from 0°C to 100°C.

Temperature compensation (pH or ammonia)

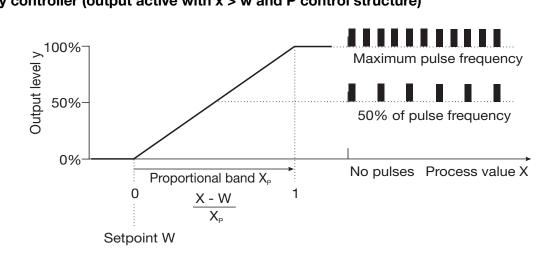

The pH value of a measurement solution depends on the temperature. Since the pH value is not always measured at the reference temperature, the instrument is able to perform a temperature compensation.

The sensor signal for the ammonia measurement is temperature-dependent. The instrument can perform temperature compensation.



The redox potential of a measurement solution is **not** temperature-dependent! Temperature compensation is not required.

Limit value (alarm) function of the binary outputs


Pulse length controller (output active with x > w and P control structure)

If actual value x exceeds setpoint W, the P controller will control in proportion

to the control deviation. When the proportional range is exceeded, the controller operates with an output level of 100% (100% clock ratio).

Pulse frequency controller (output active with x > w and P control structure)

If actual value x exceeds setpoint W, the P controller will control in proportion to the control deviation. When the proportional range is exceeded, the controller operates with an output level of 100% (maximum switching frequency).

Special controller functions: Separate controllers

This function is normally deactivated (factory setting or select "No").

In the deactivated state, the software prevents the two controller outputs from being able to work "against each other". So, for example, it is not possible to dose acid and lye at the same time.

If the controllers are separate ("Yes" selection), each controller can be freely configured.

Switch-off of the I-component

This function is normally deactivated (factory setting or select "No").

In the deactivated state, the controller works in accordance with general controller theory.

When I-component switch-off is activated ("Yes" selection), the part of the output level that can be traced back to the I-component is set to zero when the setpoint is reached.

This can be useful with mutual neutralization (acid and lye dosing both possible) in one treatment tank.

Calibration timer

The calibration timer indicates (on request) a required routine calibration. The calibration timer is activated by entering the number of days that must expire before there is a scheduled re-calibration (specified by the system or the operator).

Wash timer

The wash timer can be used to implement automated sensor cleaning. To do this, the function is assigned to a switching output.

The cycle time (cleaning interval) can be adjusted in the range from 0.0 to 240.0 hours.

A cycle time of "0.0" means the wash timer is deactivated.

The wash time (cleaning duration) is adjustable from 1 to 1800 seconds.

During the wash time the controller goes into the HOLD state, which is maintained for 10 seconds after completion of the wash time. A sensor calibration within the cycle time restarts the wash timer.

USP contact (for ultra-pure water)

The USP contact makes it possible to monitor the quality of ultra-pure water according to the requirements of USP <645>. USP <645> contains a table that assigns a limit value for conductivity depending on the temperature. If the conductivity stays below this limit value, the ultra-pure water meets the requirements of USP <645>.

If the conductivity of the water is greater than what is specified in the USP table for a given temperature, the USP contact switches the instrument.

Limit values are defined in levels. For example, a value of 5°C is used at 8°C.

Note:

During monitoring, temperature compensation must be turned off (temperature coefficient = 0)!

To do this, select Administrator Level / Basic Setting / Temperature Compensation / None.

Temperature	Max. conductivity	Temperature	Max. conductivity
°C	µS/cm (uncompensated)	°C	µS/cm (uncompensated)
0	0.6	55	2.1
5	0.8	60	2.2
10	0.9	65	2.4
15	1.0	70	2.5
20	1.1	75	2.7
25	1.3	80	2.7
30	1.4	85	2.7
35	1.5	90	2.7
40	1.7	95	2.9
45	1.8	100	3.1
50	1.9		

Excerpt from USP <645>

If the conductivity is exceeded at the relevant temperature, the configured contact switches.

USP warning alarm

The USP warning alarm switches before the water quality reaches the set limit value.

This parameter (0 - 100) is used to set the distance as a percentage (relative to the active limit value) to be maintained from the USP limit.

Ultra-pure water per Ph. Eur.

The limit comparators of the instrument switch, depending on the corresponding configuration, according to the limit valued of the European Pharmacopeia (Ph. Eur.) for purified water.

Temperature	Max. conductivity
O°	μS/cm
0	0.6
10	0.9
15	1.0
20	1.1
25	1.3
30	1.4
35	1.5
40	1.7
45	1.8
50	1.9

Ph. Eur. warning alarm

The Ph. Eur. warning alarm switches before the water quality reaches the set limit value.

This parameter (0 - 100) is used to set the distance as a percentage (relative to the active limit value) to be maintained from the USP limit.

TDS

Display/control with the unit ppm.

The specific TDS factor can also be entered in this mode.

TDS (Total **D**issolved **S**olids, also commonly referred to in Germany as filtrate dry residue (Filtrattrockenrückstand).

This value is important in areas such as groundwater analysis and power plants.

The value is also used in evaluating drinking water quality (for example in the USA, Arab and Asian countries).

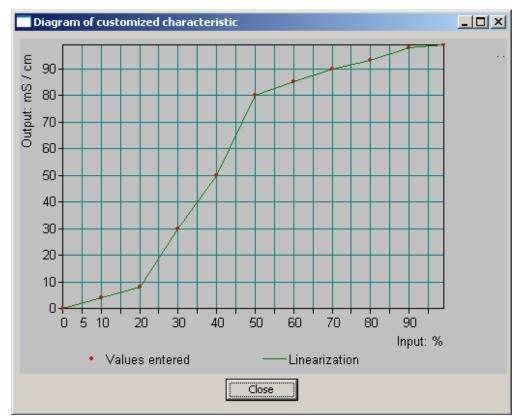
Various organizations have published limit values on this topic.

- WHO (World Health Organization) <1000 mg/l
- USEPA (United States Environmental Protection Agency) <500 mg/l

Standardized determination is performed gravimetrically, i.e.:

- Filter sample
- Evaporate filtrate
- Weigh residue

A conductivity measurement is used for the online measurement. A single time is sufficient to determine the conversion factor. It corresponds to the ratio of the conductivity value of the water to the value of the gravimetrically determined filtrate dry residue (TDS). The factor moves within the range from 0.55 to 1.0. A typical value for drinking water is about 0.67.


With modern instruments, this factor can be entered individually to achieve the most accurate measurement possible.

Customer specs. table

In this mode, the input value can be displayed based on a table (max. 20 value pairs). This function is used to display and linearize non-linear input variables. Values can only be entered in the table using the optional setup program.

Cust. specs. characteristic

In this mode, the instrument can model a monotonically increasing input variable to any output value.

The optional setup program is used to enter the requisite value table.

	Input	Output	Note Note
	0.00	0.0000	U (ith the sustemized table, you can enter a maximum of 20
2	10.00	4.0000	With the customized table, you can enter a maximum of 20 interpolation points in the table.
}	20.00	8.0000	
1	30.00	30.0000	Value range, input variable: 0.00 100.00 %
5	40.00	50.0000	Value range, output variable: -99.9900 99.9900 mS / cm
6	50.00	80.0000	Please note that the input variables must be ascending.
7	60.00	85.0000	
3	70.00	90.0000	
9	80.00	93.0000	
0	90.00	98.0000	
1	99.00	99.0000	
2			
3			
14			

Min./max. value memory

16 Appendix

This storage records the minimum and maximum input quantities that have occurred. This information can be used, for example, to assess whether the design of the connected sensor is suitable for the values that actually occur.

The max./min. value memory can be reset, See section 6.7.6 "Delete min/max values", page 35:

Datalogger

Recording duration = about 10 hours with a storage interval of 1 second Recording duration = about 150 days with a storage interval of 300 seconds

Range switchover

In some processes it is advantageous to have two measurement ranges available, for example in rinsing and regeneration processes.

Normally in these processes a low conductivity must be recorded. In the case of rinsing / regeneration, however, the conductivity is significantly higher, which would result in measurement overrange (error). This situation is not only unsatisfactory, it could also be dangerous.

When range switchover is activated, the parameter set is switched as well!

When range switchover is activated, two copies of the following parameters are present:

- Relative cell constant
- Offset
- Temperature compensation
- Temperature coefficient
- Autorange

The Autorange function can be used to define two measurement ranges between which the instrument switches in a defined manner.

- Manual Switching is initiated in this function mode by a binary input.

Autorange is only configurable for units mS/cm and μ S/cm.

Measurement range 1 must be smaller than measurement range 2.

Control only occurs in measurement range 1.

The actual value output in measurement range 2 is scaled to the full display scope.

Switching from measurement range 1 to measurement range 2 occurs when display range 1 is exceeded. The display jumps back when the actual value falls below 90% of display range 1.

A binary output can indicate switching from one measurement range to the other.

Parameter set switchover

In some processes (different process steps) is is advantageous to have two complete parameter sets available.

Define the parameter sets See section 11.5 "Parameter sets", page 77.

The predefined parameter sets are activated by a binary input.

Deposit detection

Deposit detection can be activated for four-electrode cells.

It may happen during normal operation that a coating forms on the electrodes. Because of this, the conductivity that is displayed is lower than the actual conductivity. When the "Deposit detection" function is activated, cell maintenance is required.

16.2 Parameters of the User level

When there are numerous instrument parameters to configure, it is advisable to make a note in the table below of all the parameters to be changed and to work through these parameters in the given order.

The following list shows the maximum number of parameters that can be modified.

Some of these parameters will not be visible (and therefore not editable) for your particular instrument, depending on the configuration.

Parameter	Selection / value range	New setting
	Factory setting	
Conductivity input		
Cell constant	0.01 / 0.1 / 0.5 / 1.0 / 3.0 / 10.0	
Relative cell constant	20.0 - 100.0 - 500.0	
and		
Relative cell constant MB 2		
Offset	-20.00 - 0.00 - 20.00% of the display range	
and		
offset MB 2		
Temperature	None	
compensation	Linear	
and	Natural waters	
temperature compensation	ASTM 1125 neutral	
MB 2	ASTM 1125 acidic	
	ASTM 1125 alkaline	
Temperature	Temperature input	
compensation source	Option input 1	
	Option input 2	
	Option input 3	
	Manual temperature input	
Temperature coefficient	0.00 - 2.20 - 8.00%/K	
and		
temperature coefficient		
MB 2		
Reference temperature	15.0 - 25.0 - 35.0°C	
Pollution recognition	Off	
	On	
Broken sensor detection	Off	
	On	
Filter time constant	0.0 - 2.0 - 25.0 seconds	
Calibration interval	0 - 99 days (0 = timer not active)	

16 Appendix

Parameter	Selection / value range	New setting
	Factory setting	Ŭ
Differential measurement	Off	
	Main input - (minus) Option input 1	
	Main input - (minus) Option input 2	
	Main input - (minus) Option input 3	
	Option input 1 - (minus) Main input	
	Option input 2 - (minus) Main input	
	Option input 3 - (minus) Main input	
Supply frequency	50 Hz	
	60 Hz	
Temperature input		
Temperature sensor	No sensor	
	Pt 100	
	Pt 1000	
	Cust. specs.	
	0 - 20 mA	
	4 - 20 mA	
	0 - 10 V	
	2 - 10 V	
	Resistance transmitter	
Unit	°C/°F	
Onit	%	
	Without unit	
Cooling stort	Cust. specs. -100.0 - 0.0 - 499.9°C	
Scaling start	-99.9 - 100.0 - 500.0°C	
Scaling end		
Filter time constant	0.0 - 2.0 - 25.0 seconds	
Manual temperature	-99.9 - 25.0 - +99.9°C	
Offset	-99.9 - 0.0 - +99.9°C	
Optional inputs		
Analog inputs 1 to 3	0%	
Operating mode	Off	
	Linear	
	Temperature	
	pH measurement	
	Conductivity	
	Concentration	
	Cust. specs.	
	Stroke feedback	
	Chlorine, pH-compensated	
Signal type	0 - 20 mA	
	4 - 20 mA	
	0 - 10 V	
	2 - 10 V	
	0 - 1 V	
	Pt100	
	Pt1000	
	Cust. specs.	

16 Appendix

Parameter	Selection / value range	New setting
	Factory setting	
Connection type	2-wire	
	3-wire	
	4-wire	
Display format	XXXX	
	XXX.x	
	XX.xx	
	X.xxx	
Unit	μS/cm	
	mS/cm	
	kΩ∗cm	
	MΩ∗cm	
	None	
	Cust. specs.	
	mV	
	рН	
	%	
	ppm	
	mg/l	
Scaling start	-9999 - +9998	
Scaling end	-9998 - + 9999	
Temperature	Temperature input	
compensation source	Option input 1	
	Option input 2	
	Option input 3	
	Manual temperature	
pH compensation source	Main input	
	Option input 1	
	Option input 2	
	Option input 3	
Temperature	None	
compensation	Linear	
compensation	TC graph	
	Natural waters	
	ASTM D1125 neutral	
	ASTM D1125 acidic	
	ASTM D1125 alkaline	
	NaOH 0 - 12%	
	NaOH 25 - 50%	
	HNO ₃ 0 - 25%	
	HNO ₃ 36 - 82%	
	$H_2SO_4 0 - 28\%$	
	H_2SO_4 36 - 85%	
	H ₂ SO ₄ 92 - 99%	
	HCI 0 - 18%	
	HCI 22 - 44%	
Reference temperature	15.0 - 25.0 - 30.0°C	
Filter time constant	0.0 - 2.0 - 25.0 seconds	
Relative cell constant	20.0 - 100.0 - 500.0 1/cm	
Temperature coefficient	0.00 - 2.20 - 8.00 1/cm	

Parameter	Selection / value range	New setting		
	Factory setting	New Setting		
Zero point				
Slope	-999.9 - 100.0 - +999.9%			
Binary inputs	000.0 100.0 1000.0 /0			
Binary input 1 or 2				
Function	No function			
	Manual mode			
	Hold mode			
	Hold mode inverse			
	Alarm stop			
	Freeze measured value			
	Key lock			
	Lock levels			
	Flow rate measurement			
	Reset day counter			
	Reset total counter			
	Range switchover			
Controller				
Controller 1 or 2				
Parameter set 1 or 2				
Min. setpoint	0 - 9999			
Max. setpoint	0 - 9999			
Setpoint	0 - 9999			
Setpoint 2	0 - 9999			
Proportional range	0 - 9999			
Reset time	0.00 - 9999 s			
Derivative time	0.00 - 9999 s			
Period time	2.00 - 60.0 - 999.9 s			
Hysteresis	0 - 200 - 9999			
On-delay	0.00 - 999.5 s			
Delayed release	0.00 - 999.5 s			
Output limit	0 - 100%			
Min. turn-on time	0.20 - 0.50 - 99.50 s			
Actuator time	10 - 60 - 3000 s			
Max. pulse frequency	1 - 60 - 80 1/s			
Alarm tolerance	0.00 - 1.00 - 16.00			
Alarm delay	0.00 - 9999 s			
Configuration				
Controller type	Off			
	Limit value			
	Pulse lengths			
	Pulse frequency			
	Continuous			
	Modulating			

Parameter	Selection / value range	New setting
	Factory setting	
Controller actual value	Main value	
	Not comp. Main value	
	Temperature	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
	Differential signal	
Stroke retransmission	No signal	
	Main value	
	Not comp. Main value	
	Temperature	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
Additive disturbance	No signal	
	Main value	
	Not comp. Main value	
	Temperature	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	

¹ Delayed release is automatically deactivated when wiper times are greater than 0 seconds.

Parameter	Selection / value range	New setting	
	Factory setting		
Multiplicative disturbance	No signal		
	Main value		
	Not comp. Main value		
	Temperature		
	Option input 1		
	Option input 1 not compensated		
	Option input 2		
	Option input 2 not compensated		
	Option input 3		
	Option input 3 not compensated		
	Math 1		
	Math 2		
Min/max contact	Min contact		
	Max contact		
Make/break contact	Make contact		
	Break contact		
Hold mode	0%		
	100%		
	Frozen		
	Hold output		
Hold reg. ratio	0 - 100%		
Error	0%		
	100%		
	Frozen		
	Hold output		
Alarm control	Off		
	On		
Controller special function	ns	·	
I-switch-off	Inactive (the controller is working normally)		
	Active (special behavior)		
Separate controllers	Νο		
	Yes		
Manual mode	Locked		
	Coding		
	Switching		
Limit value control			
Limit values 1 to 4			
<u></u>			

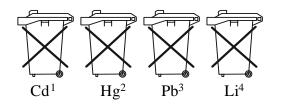
Signal source	Factory setting No signal Main value Not comp. Main value Temperature Option input 1 Option input 2	
Signal source	Main value Not comp. Main value Temperature Option input 1 Option input 1 not compensated	
	Not comp. Main value Temperature Option input 1 Option input 1 not compensated	
	Temperature Option input 1 Option input 1 not compensated	
	Option input 1 Option input 1 not compensated	
	Option input 1 not compensated	
	Orations in much 0	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
	Differential signal	
	Flow rate	
	Partial quantity	
	Total quantity	
	Output controller 1	
	Output controller 2	
	Setpoint 1 controller 1	
	Setpoint 2 controller 1	
	Setpoint 1 controller 2	
	Setpoint 2 controller 2	
Switching function	Alarm function (AF1)	
	Alarm function (AF2)	
	Alarm function (AF7)	
	Alarm function (AF8)	
Switching point	0 - 9999	
Hysteresis	0 - 9999	
Binary outputs		
Binary outputs 1 to 8		

Parameter	Selection / value range	New setting
	Factory setting	
Signal source	No signal	
	Limit value control 1	
	Limit value control 2	
	Limit value control 3	
	Limit value control 4	
	Controller 1 output 1	
	Controller 1 output 2	
	Controller 2 output 1	
	Controller 2 output 2	
	Controller alarm 1	
	Controller alarm 2	
	Controller alarm	
	Sensor warnings	
	Sensor error	
	Warnings and errors	
	Calibration timer	
	Wash timer	
	Logic 1	
	Logic 2	
	Autorange	
At calibration	Standard operation	
	Inactive	
	Active	
	Frozen	
Error	Inactive	
	Active	
	Frozen	
Hold mode	Inactive	
	Active	
	Frozen	
	Standard operation	
Switch-on delay	0.0 - 3600 s	
Switch-off delay	0.0 - 3600 s	
Pulse time ¹	0.0 - 3600 s	
Manual mode	No simulation	
	Inactive	
	Active	
Analog outputs		
Analog outputs 1 to 3	3	

Parameter	Selection / value range	New setting
	Factory setting	
Signal source	No signal	
	Main value	
	Not comp. Main value	
	Temperature	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
	Differential signal	
	Flow rate	
	Partial quantity	
	Total quantity	
	Output controller 1	
	Output controller 2	
	Setpoint 1 controller 1	
	Setpoint 2 controller 1	
	Setpoint 1 controller 2	
	Setpoint 2 controller 2	
Signal type	0 - 20 mA	
	4 - 20 mA	
	20 - 0 mA	
	20 - 4 mA	
	0 - 10 V	
	10 - 0 V	
Scaling start	0 - 9999	
Scaling end	0 - 9999	
At calibration	Moving	
	Frozen	
	Safe value	
In case of error	0/4 mA / 0 V	
(output signal, of the	20 mA / 10 V	
controller in case of error)	Frozen	
	Safety value	
Hold mode	Frozen	
(output signal, of the	Safety value	
controller in Hold mode)	Standard mode	
	0/4 mA / 0 V	
	20 mA / 10 V	
Safety value	0.0 - 20.0 mA	
Simulation	Off	
Omulation	On	
Simulation value	Off	
Simulation value		
Interfece	0.0 - 20.0 mA	
Interface		
Modbus address	1 - 254	

Parameter	Selection / value range	New setting	
	Factory setting		
Baud rate	9600		
	19200		
	38400		
Parity	None		
	Even		
	Odd		
Stop bits	1		
	2		
Profibus address	0 - 99		
EEPROM marking	Off		
g	On		
Wash timer			
Cycle time	0.0 - 240.0 hours		
-,	(0.0 = Wash contact is not active		
Wash time	1 - 60 - 1800 seconds		
Datalogger			
Storage interval	1 - 60 - 300 seconds		
Channels 1 to 4	No signal		
	Main value (standard for channel 1)		
	Not comp. Main value		
	Temperature (standard for channel 2)		
	Option input 1		
	Option input 1 not compensated		
	Option input 2		
	Option input 2 not compensated		
	Option input 3		
	Option input 3 not compensated		
	Math 1		
	Math 2		
	Differential signal Flow rate		
	Partial quantity		
	Total quantity		
	Output controller 1 (standard for channel 3)		
	Output controller 2 (standard for channel 4)		
	Setpoint 1 controller 1		
	Setpoint 2 controller 1		
	Setpoint 1 controller 2		
	Setpoint 2 controller 2		
Date year	20xx		
Date month	1 - 12		
Date day	1 - 31		
Time hour	0 - 24		
Time minute	0 - 59		
Time second	0 - 59		
Display			

Parameter	Selection / value range	New setting
	Factory setting	5
Lighting	On	
	With operation	
Display of measured value	Standard	
	Tendency	
	Bargraph	
	Trend chart	
	Large display	
	3 measured values	
	Time	
Display Top / Center /	No signal	
Bottom	Main value (standard for "Top")	
	Not comp. Main value	
	Temperature(standard for "Center" and	
	"Bottom")	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
	Differential signal	
	Flow rate	
	Partial quantity	
	Total quantity	
	Output controller 1	
	Output controller 2	
	Setpoint 1 controller 1	
	Setpoint 2 controller 1	
	Setpoint 1 controller 2	
	Setpoint 2 controller 2	
Operating timeout	0 - 1 - 10 minutes	
	(0 = operating timeout is turned off)	
Scaling start	0 - 9999	
Scaling end	0 - 9999	


Parameter	Selection / value range	New setting
	Factory setting	
Signal source	Main value	
	Not comp. Main value	
	Temperature	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
	Differential signal	
	Flow rate	
	Partial quantity	
	Total quantity	
Temperature unit	°C	
	°F	
LCD inverse	Off	
	On	
Contrast	0 - 10 - 20	

Note!

- Avoid environmental damage caused by media-contaminated parts
- Dispose of the device and packaging in an environmentally friendly manner
- Comply with applicable national and international disposal regulations and environmental regulations.

Batteries

Batteries containing pollutants are marked with a sign consisting of a crossed-out garbage can and the chemical symbol (Cd, Hg, Li or Pb) of the heavy metal that is decisive for the classification as containing pollutants:

- 1. "Cd" stands for cadmium
- 2. Hg" stands for mercury
- 3. "Pb" stands for lead
- 4. Li" stands for lithium

Electrical and electronic equipment

17 EU Declaration of Conformance

We, KOBOLD Messring GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

Transmitter/controller for conductivity, TDS, resistance, temperature and standard signals Model: ACM-1

to which this declaration relates is in conformity with the standards noted below:

EN 61326-1:2013 Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements **EN 61010-1:2010+A1:2019/AC:2019** Safety requirements for electrical equipment for measurement, control and laboratory use - Part 1: General requirements

Also the following EU guidelines are fulfilled:

2014/30/EU 2014/35/EU 2011/65/EU 2015/863/EU EMC Directive Low Voltage Directive **RoHS** Delegated Directive (RoHS III)

Hofheim, 13 March 2024

H. Volz General Manager

Joseph Burke Compliance Manager

19 UK Declaration of Conformance

We, KOBOLD Messring GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

Transmitter/controller for conductivity, TDS, resistance, temperature and standard signals Model: ACM-1

to which this declaration relates is in conformity with the standards noted below:

BS EN 61326-1:2013 Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements **BS EN 61010-1:2010+A1:2019/AC:2019** Safety requirements for electrical equipment for measurement, control and laboratory use - Part 1: General requirements

Also the following UK guidelines are fulfilled:

S.I.	2016/1091	Electromagnetic	Compatibility	Regulations 2016
------	-----------	-----------------	---------------	------------------

S.I. 2016/1101 Electrical Equipment (Safety) Regulations 2016

S.I. 2012/3032 The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012

Hofheim, 13 March 2024

H. Volz General Manager

Joseph Burke **Compliance Manager**

Manufactured and sold by:

Kobold Messring GmbH Nordring 22-24 D-65719 Hofheim Tel.: +49(0)6192-299-0 Fax: +49(0)6192-23398 E-Mail: info.de@kobold.com Internet: www.kobold.com

Version: K09/0324