

Thermischer Massedurchflussmesser

für Druckluft und Gase

messen kontrollieren analysieren

KMT

Weitere KOBOLD-Gesellschaften befinden sich in folgenden Ländern:

ÄGYPTEN, ARGENTINIEN, AUSTRALIEN, BELGIEN, BULGARIEN, CHILE, CHINA, FRANKREICH, GROSSBRITANNIEN, INDIEN, INDONESIEN, ITALIEN, KANADA, KOLUMBIEN, MALAYSIA, MEXIKO, NIEDERLANDE, ÖSTERREICH, PERU, POLEN, REPUBLIK KOREA, RUMÄNIEN, SCHWEIZ, SINGAPUR, SPANIEN, TAIWAN, THAILAND, TSCHECHIEN, TÜRKEI, TUNESIEN, UNGARN, USA, VIETNAM

KOBOLD Messring GmbH Nordring 22-24 D-65719 Hofheim/Ts.

Zentrale:

+49(0)6192 299-0 Vertrieb DE: +49(0)6192 299-500

+49(0)6192 23398 info.de@kobold.com www.kobold.com

Beschreibung

Der Durchflussmesser KMT basiert auf der thermischen Massenstrommessung und ist für die Durchflussmessung von Druckluft und Gasen in Rohrleitungen von DN 15... DN 700 bestens geeignet.

Gemessen werden kann mit dem KMT z.B. der Verbrauch von Druckluft, Stickstoff, $\mathrm{CO_2}$ O2 oder anderen nicht korrosiven, nicht brennbaren Gasen. Neue Maßstäbe setzt der KMT in punkto Messgenauigkeit und Reproduzierbarkeit, durch die anwendungsnahe Justage im Werk. Dabei wird der Durchflussmesser unter Druck bei 7 bar (abs) (DN 15 ... DN 50) oder bei 9 bar (abs) (DN 65 ... DN 700) justiert. Die Justage nahe den Einsatzbedingungen hat den Vorteil, dass dabei die tatsächliche Strömungsgeschwindigkeit in der Rohrleitung auch bei sehr großen Durchflussmengen niedrig bleibt. Diese niedrige Strömungsgeschwindigkeit ermöglicht auf Grund des stabileren Strömungsprofils eine viel bessere Reproduzierbarkeit und Genauigkeit als die sehr oft verwendete Justage bei Normaldruck, bei den Strömungsgeschwindigkeiten von bis zu 200 Nm/s oft nicht mehr richtig beherrscht werden können.

Das Herzstück des Durchflussmessers basiert auf dem in der Automobilindustrie bereits millionenfach bewährten Heißfilm-Sensorelement, welches in modernster Dünnschichttechnologie gefertigt wird. Ausgezeichnete Langzeitstabilität, schnelle Ansprechzeit und höchste Zuverlässigkeit auch in schwierigen Anwendungen sind das Merkmal dieses Strömungssensors.

Zur Ausgabe der Messwerte stehen zwei Signalausgänge zur Verfügung. Je nach Anwendung können diese als Analogausgang (Strom oder Spannung), Schaltausgang oder Impulsausgang zur Verbrauchsmessung konfiguriert werden.

Der KMT besitzt einen integrierten Verbrauchszähler. Die Verbrauchsmenge wird am Display angezeigt und der gespeicherte Wert geht auch bei einer Unterbrechung der Versorgungsspannung nicht verloren. Die Ausgabe der Verbrauchsmenge über einen frei konfigurierbaren Impulsausgang steht als weiteres hilfreiches Feature zur Verfügung.

Funktionsbeschreibung

Der Durchflussmesser KMT besteht aus dem Messumformer und der Messarmatur (nur für KMT-1/2/3). Der Messumformer ist modular und besteht aus Messfühler und Auswerte-elektronik. Der Messfühler enthält Sensor und Messelektronik in der die Daten der Werksjustage gespeichert sind. Das Gehäuse mit der Auswerteelektronik ist entweder fix am Messfühler montiert (Kompakt) oder kann steckbar bis zu 10 m abgesetzt werden. Die Messarmatur für KMT-1/2/3 dient zur einfachen und zuverlässigen Montage in der Rohrleitung. Die hohe Messgenauigkeit wird auch durch die exakte, reproduzierbare Positionierung des Messfühlers in der Messarmatur garantiert (siehe Aufbau KMT-1/2/3).

Rückschlagschutz zur sicheren Montage für KMT-4

Der Rückschlagschutz verbindet dabei drei Funktionen in einem Gerät:

Rückschlagschutz

Der Sensor kann beim Einbau nur in eine Richtung geschoben werden. Der Sensor kann auf keinen Fall zurück schlagen, auch wenn man ihn loslässt.

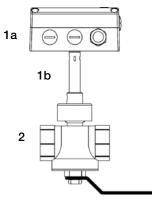
Abdichtung

Durch einen gekapselten O-Ring kann bei der Montage unter Druck keine Druckluft entweichen.

· Exakte Positionierung

Die genaue Positionierung in Bezug auf Eintauchtiefe und Ausrichtung ist einfach durchführbar, sodass exakte Messergebnisse gewährleistet sind.

Für die optimale Anpassung an unterschiedliche Messaufgaben kann man zwischen zwei Messbereichen 0,2...100 oder 0,2...200 Nm/s und drei verschiedenen Fühlerlängen mit einer maximalen Eintauchtiefe von 165/315/465 mm wählen. Der Innendurchmesser der Verbrauchsleitung kann über die USB-Schnittstelle und der im Lieferumfang enthaltenen Konfigurationssoftware ebenfalls für Rohrleitungen DN65 bis DN300 eingegeben werden.

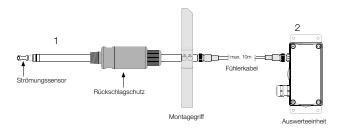

Eine optionale Anbohrschelle für KMT-4 ermöglicht die nachträgliche Montage des Sensors in bestehende Rohrleitungen und dies ohne Unterbrechung der Versorgungssysteme.

Anwendungen

- Druckluft-Verbrauchsmessung
- Druckluftzähler
- Durchflussmessung technische Gase

Aufbau KMT-1/2/3

- 1 Messumformer
 - 1 a Auswerteelektronik mit optionaler Anzeige
 - **1 b** Messfühler mit Sensor und Messelektronik
- 2 Messarmatur Kugelhahn


Die Kugelhahnmontage erlaubt den Ein- und Ausbau des Sensors bei nur kurzzeitiger Strömungsunterbrechung.

Die Kugelhahnmontage ist für Anwendungen bis 16 bar (PN 16) geeignet und für die Rohrdurchmesser DN 15 (½") bis DN 50 (2") erhältlich. Beim Einbau in die Rohrleitung sind die nötigen Ein- und Auslaufstrecken It. Bedienungsanleitung zu beachten.

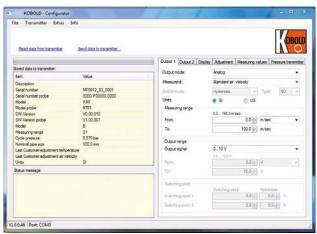
Aufbau KMT-4

Die Auswerteelektronik kommuniziert digital mit dem Messfühler und kann steckbar bis zu 10m vom Messfühler abgesetzt werden.

Montage KMT-4 (DN 65 ... DN 300)

Mit dem passenden Zubehör lässt sich der Durchflussmesser KMT-4 problemlos in jede Messaufgabe integrieren.

Eine Montage ohne Schweißarbeiten und auch das Anbohren der Versorgungsleitung unter Druck und ohne Strömungsunterbrechung, kann mit der Anbohrschelle sehr einfach realisiert werden.


Ein optionaler ½" Kugelhahn auf der Anbohrschelle ermöglicht den Ein- und Ausbau des Sensors ohne Unterbrechung der Strömung in der Druckluftleitung. Der Kugelhahn auf der Anbohrschelle verschließt die Messstelle nach dem Entfernen des Durchflussmessers druckdicht. Einer regelmäßigen Kalibration und dies ohne Berücksichtigung der Anlagen-Stillstandszeiten, steht daher nichts im Wege.

Verbrauchsmessung (Totalisator)

Der KMT hat einen integrierten Verbrauchszähler. Der gespeicherte Verbrauchswert geht auch bei einer Unterbrechung der Versorgungsspannung nicht verloren und kann über die USB-Schnittstelle ausgelesen werden. Die Ausgabe der Verbrauchsmenge über einen frei konfigurierbaren Impulsausgang steht als weiteres hilfreiches Feature zur Verfügung.

Konfigurationssoftware

Mit der im Lieferumfang enthaltenen Software und der integrierten USB Schnittstelle lässt sich der Durchflussmesser bequem an die jeweilige Applikation anpassen.

Funktionalität

- Konfiguration der Ausgänge (Abbildungsbereich/Schaltpunkt)
- Einstellen des Rohrdurchmessers
- 2 Punkt Kundenjustage f
 ür Durchfluss und Temperatur
- Auslesen des Verbrauchszählers
- Rücksetzen der Min.-/Max.- Werte und des Verbrauchszählers
- Anzeige der Messwerte

Technische Daten

Messgröße Durchfluss: Volumenstrom bei

Normbedingung nach DIN 1343

 $P_0 = 1013,25 \text{ mbar};$ $t_0 = 0 \,^{\circ}\text{C} (273,15 \text{ K})$

Messbereich		KMT-x1	KMT-x2
	DN 15	0,3263 Nm ³ /h	0,32 126 Nm ³ /h
Normvolumen- strom (Luft)	DN 20	0,57 113 Nm ³ /h	0,57 226 Nm³/h
	DN 25	0,90176 Nm ³ /h	0,90352 Nm³/h
	DN 32	1,45289 Nm ³ /h	1,45578 Nm³/h
	DN 40	2,26452 Nm ³ /h	2,26904 Nm ³ /h
	DN 50	3,50700 Nm ³ /h	3,50 1400 Nm ³ /h
Normströmung (Luft, Stickstoff, CO ₂ , Argon)	≤DN 50	0,5100 Nm/s	0,5200 Nm/s
Normströmung (Sauerstoff)	≤DN 25	0,5100 Nm/s	0,5200 Nm/s

Durchflussmessbereich in Abhängigkeit vom Rohrdurchmesser (KMT-4)

Rohr		Innen	Messbereich		
		Ø	KMT-41	KMT-42	
	Zoll	mm	0,2 100 Nm/s	0,2200 Nm/s	
DN 65	21/2"	70,3	2,81397 Nm³/h	2,82793 Nm³/h	
DN 80	3"	82,5	3,81923 Nm³/h	3,13847 Nm³/h	
DN 100	4"	107,1	6,53242 Nm³/h	6,56483 Nm³/h	
DN 125	5"	131,7	9,84902 Nm³/h	9,89803 Nm³/h	
DN 150	6"	159,3	14,37171 Nm³/h	14,314343 Nm³/h	
DN 200	8"	206,5	24,112051 Nm³/h	24,1 24 101 Nm ³ /h	
DN 250	10"	260,4	38,319163 Nm³/h	38,338325 Nm³/h	
DN 300	12"	309,7	54,227 105 Nm ³ /h	54,254211 Nm ³ /h	
DN 350	14"	339,6	65,232591 Nm³/h	65,265 183 Nm³/h	
DN 400	16"	388,8	85,442719 Nm³/h	85,485438 Nm³/h	
DN 500	20"	486	133,566749 Nm ³ /h	133,5133498 Nm³/h	
DN 600	24"	585	193,496712 Nm ³ /h	193,4193425 Nm³/h	
DN 700	28"	682,6	263,4131675 Nm³/h	263,4263350 Nm ³ /h	

Genauigkeit (in Luft bei 7 bar (abs) (und 23°C für KMT-1/2/3 d.h.

 \leq DN 50)*: \pm 1,5% vom MW

+0,5% v. ME

Genauigkeit (in Luft bei 9 bar (abs) (und 23°C für KMT-4 d.h.

DN 65...DN 300)*: ±1,5% vom MW

+0,8% vom ME

Temperaturkoeffizient: ±0,1% vom MW/°C

 $\begin{array}{ll} \text{Druckkoeffizient**:} & +0.5\% \text{ / bar} \\ \text{Ansprechzeit t}_{90}\text{:} & <1\,\text{s} \\ \text{Messrate:} & 0.5\,\text{s} \end{array}$

Temperatur

Messbereich:

-20...80°C

Genauigkeit (bei 20 °C): ±0,7 °C

Eingang: optionale Druckkompensation

4 - 20 mA (2-Leiter;

14,2...16 V_{DC}) für Drucksensor

Ausgänge: Ausgangssignal und

Abbildungsbereich sind frei

skalierbar

Analogausgang

Spannung: 0 - 10 V max. 1 mA Strom (3-Leiter): 0 - 20 mA bzw.

4 - 20 mA RL $< 500~\Omega$

Schaltausgang: potentialfrei max. 44 V_{DC},

500 mA Schaltleistung

Impulsausgang: Verbrauchsmengen-Zähler,

Impulslänge: 0,02...2 sek.

Digitalschnittstelle: USB (für Konfiguration)

Elektrischer Anschluss: Kabelverschraubung M16x1,5

Versorgungsspannung: 18 - 30 V_{AC/DC}

Stromverbrauch: max. 200 mA (mit Display)

Temperaturbereich

 Umgebungstemperatur:
 -20 ... 60 °C (-4 ... 140 °F)

 Mediumstemperatur:
 -20 ... 80 °C (-4 ... 176 °F)

 Lagertemperatur:
 -20 ... 60 °C (-4 ... 140 °F)

Nenndruck: PN16 (232 PSI)
Feuchte: nicht kondensierend

Medium: Druckluft oder nicht korrosive

Gase

Anzeige: 2-zeilige LCD-Anzeige,

hintergrundbeleuchtet

Elektromagnetische

Verträglichkeit: EN 61326-1 Industrieumgebung,

EN 61326-2-3

Material

Gehäuse: Metall (AlSi₃Cu) Fühlerrohr: Edelstahl Fühlerkopf: Edelstahl/Glas

Kugelhahn (KMT-1/2/3): Messing

Rückschlagsicherung

(KMT-4): Messing
Schutzart Gehäuse: IP65/Nema 4

* Die Toleranzangaben beinhalten die Unsicherheit der Werkskalibration mit einem Erweiterungsfaktor k=2 (2-fache Standardabweichung). Die Berechnung der Toleranz erfolgte nach EA-4/02 unter Berücksichtigung des GUM (Guide to the Expression of Uncertainty in Measurement)

** Die Druckabhängigkeit beträgt +0,5%/bar. Der KMT wird bei 7 bar (abs) kalibriert. Dadurch ist der Fehler bei 7 bar = 0 (z.B. zusätzlicher Fehler bei 10 bar = +1,5% vom Messwert. Dieser Fehler kann durch eingeben des tatsächlichen Systemdrucks (mit der Konfiguratorsoftware) korrigiert



Folgende Gase können mit dem Durchflussmesser KMT gemessen werden

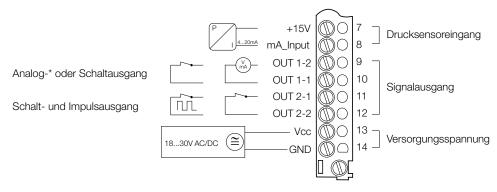
- Luft
- Stickstoff
- Kohlendioxid
- Argon
- Sauerstoff

Bei Medium Sauerstoff nur öl- und fettfreie Geräte einsetzen und die entsprechenden Sicherheitsvorschriften beachten.

Durchflussmessbereich in Abhängigkeit vom Betriebsdruck (\leq DN 50)

Formel zur Berechnung des Normvolumenstroms

 $V_0 = V_0 x id^2 x \pi/4 x 3600$


 \dot{V}_0 = Normvolumenstrom [m³/h]

 \dot{V}_0 = Normströmung [m/s]

id = Innendurchflussmesser [m]

 $\pi = 3,1415$

Anschlussbild

^{*} Beim Analogausgang ist OUT 1-1 intern mit GND verbunden. Schalt- und Impulsausgang sind potentialfrei

Bestelldaten (Bestellbeispiel: KMT-1 14 R 0 0 L 1 N Q 1)

Тур	Messbereich/ Einbaulänge (nur KMT-4)	Anschluss	Anzeige	Kabellänge Sensor/ Elektronik
	14 = 0,3263 Nm³/h für Rohr DN 15 (½")	R = Gewinde Kugel-		
KMT-1	24 = 0,32126 Nm³/h für Rohr DN 15 (½")			
Sensor kompakt, Durchfluss rechts	15 = 0,57 113 Nm³/h für Rohr DN 20 (¾")			
nach links	25 = 0,57 226 Nm³/h für Rohr DN 20 (¾")			
KMT-2	16 = 0,90 176 Nm³/h für Rohr DN 25 (1")	hahn mit G-Gewin-		
Sensor kompakt, Durchfluss links	26 = 0,90352 Nm³/h für Rohr DN 25 (1")	de N ³⁾ = Gewinde		
nach rechts	17 = 1,45289 Nm³/h für Rohr DN32 (1 ¼")			
KMT-3	27 = 1,45578 Nm³/h für Rohr DN32 (1 ¼ ")	Kugel- hahn mit		
abgesetzter	18 = 2,26 452 Nm³/h für Rohr DN 40 (1 ½")	NPT-		
Fühler, Durchfluss gemäß Einbau	28 = 2,26904 Nm ³ /h für Rohr DN 40 (1 ½")	Gewinde		
(≤DN50)	19 = 3,50700 Nm ³ /h für Rohr DN 50 (2")	1		
	29 = 3,50 1400 Nm³/h für Rohr DN 50 (2")]		0 = ohne 2 ¹⁾ = 2 m mit
	(siehe technische Daten für Durchflussmessbereiche in Abhängigkeit vom Rohrdurchmesser)			
	10 = 2.8 1397 Nm ³ /h für Rohr DN 65 (2 ½")/165 mm	F = R½" AG am Eintauch-		
	20 = 2.8 2793 Nm ³ /h für Rohr DN 65 (2 ½")/165 mm			
	1B = 3.8 1923 Nm³/h für Rohr DN 80 (3")/165 mm			
	2B = 3.83847 Nm³/h für Rohr DN 80 (3")/165 mm			
	1C = 6.5 3242 Nm³/h für Rohr DN 100 (4")/165 mm		0 - obno	
	2C = 6.5 6483 Nm³/h für Rohr DN 100 (4")/165 mm		0 = ohne Display 1 = LCD-Display	
	1D = 9.84902 Nm³/h für Rohr DN 125 (5")/315 mm			
	2D = 9.89803 Nm³/h für Rohr DN 125 (5")/315 mm			
	1E = 14.37171 Nm³/h für Rohr DN 150 (6")/315 mm			
	2E = 14.3 14343 Nm³/h für Rohr DN 150 (6")/315 mm			
KMT-4	1F = 24.1 12051 Nm³/h für Rohr DN 200 (8")/315 mm			
abgesetzer Fühler	2F = 24.124101 Nm³/h für Rohr DN 200 (8")/315 mm			
(DN65 DN700)	1G = 38.3 19 163 Nm³/h für Rohr DN 250 (10")/315 mm			
	2G = 38.338325 Nm³/h für Rohr DN 250 (10")/315 mm	fühler		
	1H = 54.227105 Nm³/h für Rohr DN 300 (12")/315 mm			
	2H = 54.254211 Nm³/h für Rohr DN 300 (12")/315 mm			
	1J = 65,232591 Nm ³ /h für Rohr DN 350 (14")/465 mm	_		
	2J = 65,265183 Nm ³ /h für Rohr DN 350 (14")/465 mm			
	1K = 85,442719 Nm³/h für Rohr DN 400 (16")/465 mm			
	2K = 85,485438 Nm³/h für Rohr DN 400 (16")/465 mm			
	1L = 133,566749 Nm ³ /h für Rohr DN 500 (20")/465 mm			
	2L = 133,5 133498 Nm ³ /h für Rohr DN 500 (20")/465 mm			
	1M = 193,496712 Nm ³ /h für Rohr DN 600 (24")/465 mm	1		
	2M = 193,4193425 Nm ³ /h für Rohr DN 600 (24")/465 mm	1		
[1N = 263,4 131 675 Nm ³ /h für Rohr DN 700 (28")/465 mm			
	$2N = 263,4263350 \text{ Nm}^3/\text{h für Rohr DN 700 (28")}/465 \text{ mm}$			

Bestelldaten (Fortsetzung) auf nächster Seite

Thermischer Massedurchflussmesser Typ KMT

Bestelldaten (Fortsetzung)

	Medium	Einheit	Physikalische Größe Ausgang 1	Physikalische Größe Ausgang 2	Ausgang 1 / Ausgang 2
N = C =	Luft Stickstoff CO ₂ Argon	1 = SI Einheiten 2 = US Einheiten	N = Normvolumenstrom [Nm³/h] (Standardvorein- stellung) T = Temperatur [°C] M = Massestrom [kg/h] V = Normströmung [Nm/s]	Q = Verbrauch [Nm³] (Standardvorein- stellung)	2 = Schalt-/Zählimpulsausgang 3 = Analogausgang 0-10 V/ Zählimpulsausgang 4 = Analogausgang 4-20 mA/ Zählimpulsausgang (Standard)
S ²⁾ = Y =	Sauerstoff (nur bis DN 25) andere Gase (auf Anfrage)	(z. B. SCFM, SFPM)		N = Normvolumenstrom [Nm³/h] T = Temperatur [°C] M = Massestrom [kg/h)] V = Normströmung [m/s]	 1 = 2 x Schaltausgang 7 = Analogausgang 0-10 V/ Schaltausgang 8 = Analogausgang 4-20 mA/ Schaltausgang

Bestelldaten Ersatzsensor (Bestellbeispiel: ERS-KMT-S 1 1 4 K)

Тур	Bauform	Messbereich	Messstrecke Rohrdurchmesser	Montage
			4 = DN15 5 = DN20 6 = DN25 7 = DN32 8 = DN40 9 = DN50	K = für Kugelhahn
ERS-KMT-S	 1 = Sensor kompakt (Durchflussrichtung rechts nach links) 2 = Sensor kompakt (Durchflussrichtung links nach rechts) 3 = abgesetzter Fühler (≤ DN 50) 4 = abgesetzter Fühler (DN 65 DN 700) 	1 = low 2 = high	0 = DN65 B = DN80 C = DN100 D = DN125 E = DN150 F = DN200 G = DN250 H = DN300 J = DN350 K = DN400 L = DN500 M = DN600 N = DN700	F = R½" AG am Eintauchfühler

¹⁾ Nur für KMT-3... und KMT-4...
2) Fühlerkopf und Kugelhahn (Medienberührende Teile) sind öl- und fettfrei gereinigt. Achtung: Nur öl- und fettfrei gereinigte Geräte dürfen für Sauerstoff eingesetzt werden

 $^{^{3)}}$ Nicht möglich mit ½" und 1¼"

8

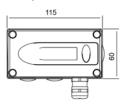
Bestelldaten Ersatz-Fühlerkabel (Version KMT-3/4) (Bestellbeispiel: ERS-KMT-K 2)

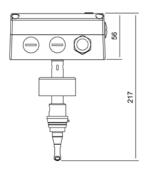
Тур

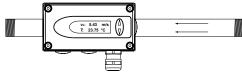
ERS-KMT-K 2 = 2 m mit Stecker M12, 4-polig

ERS-KMT-K 5 = 5 m mit Stecker M12, 4-polig

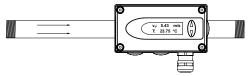
ERS-KMT-K Z = 10 m mit Stecker M12, 4-polig


Bestelldaten Montagezubehör für KMT-4

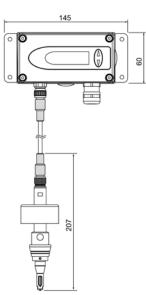

Тур	Beschreibung	Bild/Zeichnung
ERS-KMT-AS65	Anbohrschelle DN 65	n fi
ERS-KMT-AS80	Anbohrschelle DN 80	
ERS-KMT-AS1H	Anbohrschelle DN 100	
ERS-KMT-AS1Z	Anbohrschelle DN 125	
ERS-KMT-AS1F	Anbohrschelle DN 150	
ERS-KMT-AS2H	Anbohrschelle DN 200	
ERS-KMT-AS2F	Anbohrschelle DN 250	
ERS-KMT-AS3H	Anbohrschelle DN 300	101 107
ERS-KMT-AN	Anschweißnippel (Muffe) aus Edelstahl (1.4301) zum Schweißen an der Rohrleitung G½ IG/G¾ AG	25 11 0 0 14 00 0 70 0 14 00
ERS-KMT-KH	Kugelhahn G½/G¾ IG Überwurfmutter aus Messing zum Ein- / Ausbau unter Druck ohne Strömungsunterbrechung incl. Flachdichtung	20.5
ERS-KMT-KP	Kugelhahn G½/G¾ IG Überwurfmutter aus Messing für Parallelmessung von Druck oder Taupunkt	Seitenbeschlag
ERS-KMT-AR15	Adapter $R_p 1/2$ " aus Messing IG auf NPT $1/2$ " AG für Prozessanschluss	10 14 14 10 14 10 10 10 10 10 10 10 10 10 10 10 10 10


Abmessungen [mm] (für KMT-1/2/3 d.h. \leq DN 50)

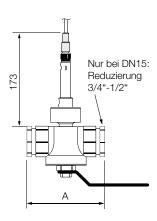
Kompakt KMT-1..., KMT-2...

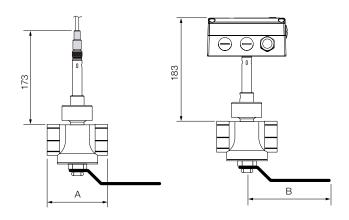


KMT-1...


Durchflussrichtung rechts nach links

KMT-2...



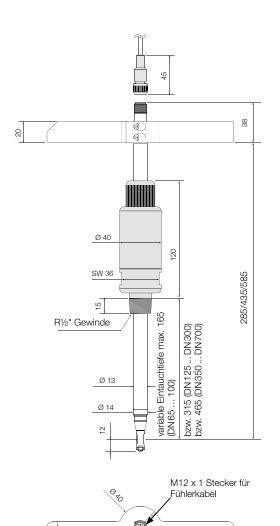

Durchflussrichtung links nach rechts

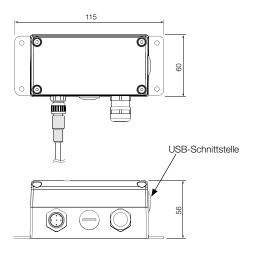
Abgesetzer Fühler KMT-3...

Kugelhahn für KMT-1/2/3 (Standard-Lieferumfang)

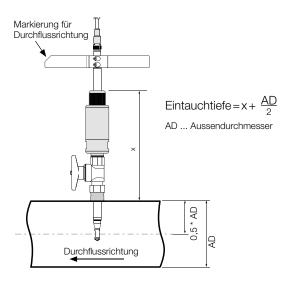
Kugelhahn	Gewinde	Α	В
		[mm]	[mm]
DN15	R _p 1/2"	100±8	92
DN 20	R _p oder NPT ¾"	72	92
DN 25	R _p oder NPT 1"	83	124
DN 32	R _p 1 1/4"	100	124
DN 40	R _p oder NPT 11/2"	110	147
DN 50	R _p oder NPT 2"	131	147

Innengewinde:


Whitworth-Gewinde nach EN 10226 (alt DIN 2999) oder NPT

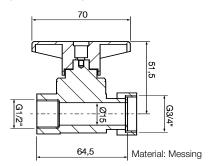

Abmessungen [mm] (für KMT-4 d.h. DN65...DN300)

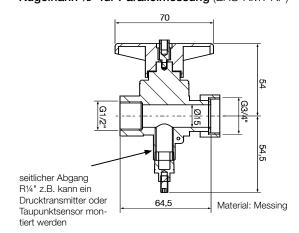
Fühler



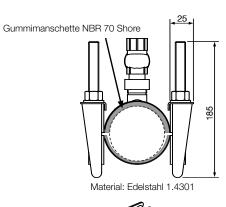
180

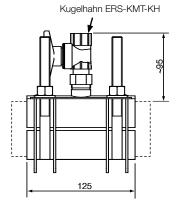
Gehäuse-Auswerteeinheit

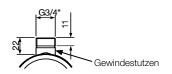

Montage-Eintauchtiefe

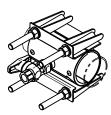


Abmessungen [mm] (Zubehör für KMT-4 d.h. DN 65...DN 300)


Kugelhahn 1/2" (ERS-KMT-KH)




Kugelhahn ½" für Parallelmessung (ERS-KMT-KP)



Anbohrschelle (Lieferung ohne Kugelhahn)

Rohr	Klemmbereich [mm]	max. Betriebsdruck
DN 65	73-93	16 bar (PN16)
DN 80	86-106	16 bar (PN16)
DN 100	107 - 127	16 bar (PN16)
DN125	128 - 148	16 bar (PN16)
DN150	149-171	16 bar (PN16)
DN 200	216-236	16 bar (PN16)
DN 250	260-280	10 bar (PN10)
DN 300	315-335	10 bar (PN10)