APM-1

Transmitter/controller for pH, redox, NH_3 , temperature and standard signals

Operation Instructions

WARNING:

A sudden malfunction of the instrument, or one of the sensors connected to it, could potentially result in dangerous, overdosing! Suitable preventive measures must be in place to prevent this from happening.

Note:

Please read these Operating Instructions before placing the instrument in operation. Keep the manual in a place which is accessible to all users at all times.

Resetting the brightness of the LC display:

If the brightness setting has been adjusted so that the display text is no longer legible, the basic setting can be restored as follows:

- * Switch off the supply voltage.
- ★ Switch on the supply voltage and immediately press and hold the ▼ and ▲ keys simultaneously.

To set the operator language:

- ***** Press the \bowtie key for longer than 3 seconds.
- * Select the appropriate language with the $\mathbf{\nabla}$ and $\mathbf{\Delta}$ keys.
- ★ Briefly press the PGM key.

Content

1 1.1 1.2	Typographical conventions Warning signs Reference signs	8 8
2	Description	9
3 3.1 3.2 3.3 3.4	Instrument identification Nameplate Type designation Accessories (included in delivery) Accessories (optional)	11 11 12 13 13
4 4.1 4.2	Assembly General Dimensions	
5 5.1 5.2 5.3	Installation Installation instructions Electrical isolation Connection	 15 15 16 17
6	Operation	21
6.1	Controls	21
6.2	Display	22
6.3	Principle of operation	23
6.4	Measuring mode	
6.5	Input/output information	27
0.0 6 7	Administrator level	ی عم
6.8	MANUAL mode / Simulation mode	
6.9	HOLD mode	
7	Commissioning	40
7.1	Getting started	40
7.2	Setting examples	41
8 8.1 8.2 8.3 8.4	Calibrating a pH measurement chain Notes General information Zero point (1-point) calibration 2-point calibration	46 46 46 48 49

Content

8.5	3-point calibration	51
8.6	pH Antimony measurement chain	54
8.7	ISFET pH combination electrodes	54
9	Calibrating a redox measurement chain	55
9.1	Notes	55
9.2	General information	55
9.3	Zero-point calibration (one-point offset calibration)	57
9.4	2-point calibration	58
10	Calibrating an ammonia measuring cell	60
10.1	Notes	60
10.2	General information	60
10.3	Zero point (1-point) calibration	61
11	Calibrating a sensor with a standard signal	63
11.1	General information	63
11.2	Linear operating mode	65
11.3	pH operating mode	69
11.4	Conductivity operating mode	70
11.5	Concentration operating mode	76
11.6	Chlorine measurement operating mode, pH-compensated	77
12	Calibration logbook	79
12.1	General information	79
13	Controller	81
13.1	General information	81
13.2	Controller functions	81
13.3	Software controllers and outputs	82
13.4	Configuration of higher order controllers	84
13.5	Parameter sets	84
13.6	Sample configurations	85
14	Setup program	88
14.1	Configurable parameters	88
14.2	Documenting the instrument configuration	89
14.3	Special features for "Datalogger"	90
15	Eliminating errors and faults	92

Content

16	Technical data	
17	Retrofitting optional boards	97
17.1	Identifying an optional board	97
17.2	Removing a plug-in module	
17.3	Inserting a plug-in module	
17.4	Retrofitting optional boards (field housing)	100
18	Appendix	
18.1	Glossary	
18.2	Parameters of the User level	112
19	Disposal	123
20	EU Declaration of Conformance	124
21	UK Declaration of Conformance	125

The instruction manuals on our website <u>www.kobold.com</u> are always for currently manufactured version of our products. Due to technical changes, the instruction manuals available online may not always correspond to the product version you have purchased. If you need an instruction manual that corresponds to the purchased product version, you can request it from us free of charge by email (<u>info.de@kobold.com</u>) in PDF format, specifying the relevant invoice number and serial number. If you wish, the operating instructions can also be sent to you by post in paper form against an applicable postage fee.

Index

1-point calibration - ammonia 61 1-point calibration - pH 48 2-point calibration 102 2-point calibration - pH 49 3-point calibration - pH 51 3-point calibration . 103

A

Accessories *13* Administrator *33* Asymmetrical connection 109–111

В

Basic setting 33 Binary inputs and outputs States 30

С

Calibration Ammonia, 1-point 61 Ammonia, zero point 61 Antimony 54 **ISFET 54** Logbook 79 pH ISFET 54 pH, 2-point 49 pH, antimony 54 Redox, one-point 57 Redox, zero-point 57 Standard signal 63 Standard signal, options 64 Calibration release 35 Configurable parameters 88 Controller "Higher order" switching functions 81 "Simple" switching functions 81 General information 81 Parameter sets 84 Controller functions 81 Controllers Configuration of "higher order" controllers 84 Setting example, limit monitoring 85 Setting example, pulse length output 86 Customer settings 112

D

Datalogger Special features 90 Date of manufacture 11 Delete 35 Display 22

E

Electrical isolation 16

F

Factory settings 112

G

Getting started 40

Η

HOLD mode 37

Info Device 32 Hardware 31 Installation position 14 ISFET sensor 111

Κ

Key combinations 27

L

Limit functions 103

Μ

Manual 31 MANUAL mode 35 Analog outputs 37 Binary outputs 37 Controller 36 Deactivation 39 Switching outputs 36 Manual mode overview 31 Menu Customized 28 Min/max values 28–29 Mounting location 14

0

Ooutput 29 Optional inputs Current values 30 Output level display 29

Ρ

Parameter overview 112 Password 33 Principle 23 Principle of operation 27

R

Rapid access 27 Reference signs 8

S

Setting example pH difference measurement 43 pH measurement 41 Setup program 88 Simulation mode 35 Simulation of binary outputs 37 States 30 Sunlight 14

Т

Temperature compensation 109

U

User 32 User data 28

W

Warning signs 8 Wash timer 111 Washing contact 111

Ζ

Zero point calibration 102

1 Typographical conventions

1.1 Warning signs

This symbol is used when there may be **danger to personnel** if the instructions are ignored or not followed correctly!

Caution

This symbol is used when there may be **damage to equipment or data** if the instructions are ignored or not followed correctly!

1.2 Reference signs

Note

This symbol is used to draw your **special attention** to a remark.

abc ¹	Footnote
	Footnotes are remarks that refer to specific points in the text. Footnotes consist of two parts:
	A marker in the text and the footnote text.
	The markers in the text are arranged as consecutive superscript numbers.
*	Instruction
	This symbol indicates the description of an action to be performed.
	The individual steps are marked by this asterisk.
	Example:
	★ Briefly press the ▲ key.

Inputs/outputs In addition to the main input (pH/redox) and the secondary input (temperature compensation), the basic instrument alone has two binary inputs, two relays, one power supply for external sensors and a setup interface.

Input signals can be shown as numbers or as a bar graph on the graphic display. Parameters are displayed in plain text for easily comprehensible and reliable operation.

Optional Three further slots can be fitted with extensive additional configurable inputs and outputs and interfaces.

Application The instrument is suitable, for example, for displaying, measuring and controlling:

- pH value and/or redox potential.
- Free chlorine, chlorine dioxide, ozone, hydrogen peroxide and peracetic acid, in combination with suitable sensors.
- (Hydrostatic) liquid levels with 2-wire transmitters (level probes).
- Flow rate in conjunction with transmitters.
- Two temperature measuring points.
- Most sensors and transmitters that output standard signals (0 10 V or 0(4) 20 mA).

Because temperature measurement is integrated, temperature compensation takes place quickly and precisely, which is particularly important for many analytical measurements.

Key features

- Display: mg/l, pH, mV, µS/cm, etc. Special settings are also possible with the setup program
- Configurable display text (operator level)
- Alarm text with color change

2 **Description**

- A choice of display visualizations: large numbers, bar graph or tendency (trend) display
- Four limit controllers
- Integrated calibration routines: with 1, 2 and 3 points
- Math and logic module (optional)
- Calibration logbook
- Three optional slots
- Selectable languages: English, German, French, etc.
- Setup program provides: convenient programming, system documentation
- RS422/485 interface (optional)
- PROFIBUS-DP interface (optional)

3.1 Nameplate

on the transmitter

The date of manufacture is encoded in the "F No." (serial number): 1122 means year of manufacture 2011 / calendar week 22

3.2 Type designation

Order Details (Example: APM-1 E 1 0 0 0 Y)

Model	Version	Housing	Power supply	Option 1 (Optional board)	Option 2 (Optional board)	Option 3 (Optional board)	Special
APM Evaluation electronics pH/redox	1 = Compact-Line (new) Input: 1 x pH/redox, 1 x temperature/ standard signal, 2 x binary input sensor supply: 2-wire transmitter, 2 relays	 E = for panel mounting F = Field housing S = Field housing with wall mounting bracket R = Field housing with pipe mounting bracket 	1 = 110240 V _{AC} -15%/+10%, 4863 Hz 2 = 2030 V _{AC/DC} , 4863 Hz	 4 = analogue output 0(4)-20 mA, 0(2)-10V (Standard) 0 = without 1 = universal input (resistance, current, voltage) 2 = 1 relay (changeover contact) 3 = 2 relays (NO with common pin) 5 = 2 Photo-Mos relay switch (0.2 A) 6 = 1 semiconductor relay TRIAC (1A) 7 = 1 power supply 4.85 V (e. g. for ISFET sensor) 8 = 1 power supply 12 V_{DC} (e. g. for inductive proximity switch) 	 0 = without 1 = universal input (resistance, current, voltage) 2 = 1 relay (changeover contact) 4 = analogue output 0(4)-20 mA, 0(2)-10V 5 = 2 Photo-Mos relay switch (0.2 A) 6 = 1 semiconductor relay TRIAC (1A) 7 = 1 power supply 4.85V (e. g. for ISFET sensor) 8 = 1 power supply 12 V_{DC} (e. g. for inductive proximity switch) 	 0 = without 1 = universal input (resistance, current, voltage) 2 = 1 relay (changeover contact) 3 = 2 Relais (NO with common pin) 4 = analogue output 0(4)-20 mA, 0(2)-10 V 5 = 2 Photo-Mos relay switch (0.2 A) 6 = 1 semiconductor relay TRIAC (1A) 7 = 1 power supply 4.85 V (e. g. for ISFET sensor) 8 = 1 power supply 12 V_{DC} (e. g. for inductive proximity switch) S = Interface RS 422/485 D = Data logger with interface RS 485¹¹ P = Interface Profibus DP 	0 = without (factory set) Y = adjusted according to customer specification

¹⁾ The readout of data is only possible with the PC setup software! Note: All languages are available in the device menu and can be changed by the customer at any time. The factory default setting of a language (except for "German") entail additional costs.

3.3 Accessories (included in delivery)

- 4 x fastening elements, complete¹
- 3 x CON plug-in link¹
- 3 x jumper wire²
- 1 x seal for panel¹
- 1 x fastening elements, complete²
 - 1 x DIN rail fastening left
 - 1 x DIN rail fastening right
 - 3 x wall mount
 - 3 x fastening screw
- ¹ For basic type extension 01 only (in the panel enclosure)
- ² For basic type extension 05 only (in the surface-mounted enclosure)

3.4 Accessories (optional)

Туре	Sales No.
Holder for C rail	ACM-Halt
PC setup software	ACM-Soft
PC interface cable including USB/TTL converter and two adapters (USB connecting cable)	ACM-Int

Optional board	Code	Sales No.
Analog input (universal)	1	APM-1000001
Relay (1 x changeover)	2	APM-1000002
Relay (2 x NO)	3	APM-1000003
Analog output	4	APM-1000004
Two MosFET semiconductor switches	5	APM-1000005
Semiconductor relay 1 A	6	APM-1000006
Supply voltage output +/- 5 V DC (e.g. for ISFET)	7	APM-1000007
Supply voltage output 12 V DC (e.g. for inductive proximity switch)	8	APM-1000008
Interface - RS422/485	10	APM-100000S
Datalogger with RS485 interface	11	APM-100000D
Profibus-DP interface	12	APM-100000P

4 Assembly

4.1 General

Mounting	Find a location that ensures easy accessibility for the later calibration.
location	The fastening must be secure and must ensure low vibration for the instrument.
	Avoid direct sunlight!
	Permissible ambient temperature at the installation location: -10 - 55°C with max. 95% rel. humidity, no condensation.
Installation position	The instrument can be mounted in any position.

4.2 Dimensions

4.2.1 Panel mounting

Close mounting

Minimum spacing of panel cutouts	Horizontal	Vertical
Without setup connector:	30mm	11mm
With setup connector (see arrow):	65mm	11mm

4.2.2 Field housing

5.1 Installation instructions

The electrical connection must only be performed by qualified personnel!

- ❑ The choice of cable, the installation and the electrical connection must conform to the requirements of VDE 0100 "Regulations on the Installation of Power Circuits with Nominal Voltages below 1000 V" and the relevant local regulations
- □ If contact with live parts is possible when working on the device, it must be completely disconnected from the electrical supply.
- The load circuits must be fused for the maximum load currents in each case to prevent the relay contacts from becoming welded in the event of a short circuit.
- □ Electromagnetic compatibility meets the requirements of EN 61326.
- □ Lay the input, output, and supply lines so they are physically separated from each other and are not parallel.
- □ Use twisted and shielded probe cables. If possible, do not lay these cables close to components or cables through which current is flowing. Ground the shielding at one end.
- □ The probe cables must have an uninterrupted run (do not route them via terminal blocks or similar arrangements).
- □ No other consumers can be connected to the power terminals of the instrument.
- □ The instrument is not suitable for installation in areas with an explosion hazard.
- Apart from faulty installation, incorrect settings on the instrument may also affect the proper functioning of the subsequent process or lead to damage. You should therefore always provide safety equipment that is independent of the instrument and it should only be possible for qualified personnel to make settings.

Mounting information for conductor cross-sections and ferrules

Ferrule	Conductor c	ross-section	Minimum length of ferrule or	
	Minimum	Maximum	stripping	
Without ferrule	0.34mm ² .	2.5mm ² .	10mm (stripping)	
Without collar	0.25mm	2.5mm ² .	10mm	
With collar up to 1.5mm ²	0.25mm ² .	1.5mm ² .	10mm	
Twin, with collar	0.25mm ² .	1.5mm ² .	12mm	

5.2 Electrical isolation

5.3 Connection

5.3.1 Terminal assignment

(1)	Row 1	(a)	Option 1	(b)	Option 2	(c)	Option 3		
(2)	Row 2	Main input board (pH / redox / temperature / standard signal)							
(3)	Row 3	PSU (pov	J board wer supply / 2x r	elays	PSU board (power supply / 2x relays)				

5.3.2 Optional board (row 1, slot a, b or c)

Function	Symbol	Terminal for slot (a)	Terminal for slot (b)	Terminal for slot (c)
Analog input				
Temperature sensor		2	6	10
in a two-wire circuit	<u></u> ttə_	4	8	12
Pt100 or Pt1000				
Temperature sensor	0	2	6	10
in a three-wire circuit		3	7	11
Pt100 or Pt1000		4	8	12
Resistance transmitter		2	6	10
		3	7	11
	∽ s	4	8	12
	OA			
Electrical current	O +	3	7	11
	O -	4	8	12

Function	Symbol	Term for slo	inal ot (a)	Te for	rminal slot (b)	Te for	rminal slot (c)
Voltage	O +	1	()		5		9
0(2) - 10 V	o -	2			6		10
Voltage	O +	2			6		10
0 - 1 V	0 -	3			7		11
Continuous output							
Current or voltage	O +	2			6		10
		3			7		11
Modbus interface				l		1	
RS422		1			5		9
		2			6		10
		3			7		11
		4			8		12
BS/85	O TxD-	3			7		11
13403		4			7 8		12
Drefibus interface	O RxD/TxD-	•			0		12
Prolibus internace					5		0
	O VP(+5V)	2			5 6		9 10
	O RxD/TxD-P(B)	3			7		11
	O RxD/TxD-N(A)	4			8		12
Dete la grace interface	O DGND						
		2			6		10
13403		3			7		10
Belay (1x changeover)	O RXD/TXD-				•		
	0 0	K3 1		K4	5	K5	9
		2			6		10
		2			7		10
Polov (0x NO, common nin)	0 S	3			1		
		K3 1				K 5	9
						113	10
	• • • • • • • • • • • • • • • • • • •	2				140	10
	O S	K6 3				Kð	11
Iriac (1 A)				12.4	6	VE	10
		r.s 2		N 4	0	кэ	10
		3			1		11
Foto-MOS relay (0.2 A)	0						
	JIO	K3 1		K4	5	K5	9
	│ ↓ ⇒ │ ै	2			6		10
					-		. •
		K6 3		K7	7	K8	11
	↓ ≠ []	4			8		12

Function	Symbol	Terminal for slot (a)	Terminal for slot (b)	Terminal for slot (c)
Power supply for ISFET sensor				
DC +/- 5 V	O +	1	5	9
GND	O ⊥	2	6	10
		3	7	11
	O ⊥	4	8	12
	o -			
DC +12 V	O +	1	5	9
GND	o -	2	6	10

5.3.3 Main board (row 2)

Function	Symbol	Terminal
Power supply for ISFET sensor	O +	11
DC +/- 4.85 V	O ⊥	10
GND	o -	15
Standard signal input for	O +	3
electrical current	o -	4
0(4) - 20 mA		
Standard signal input	O +	1
for voltage	o -	4
0(2) - 10 V or 10 - 0(2) V		
Temperature sensor		2
in a two-wire circuit	<u>ett</u>	3
Pt100 or Pt1000	Q	4
Temperature sensor	° Nhha	2
in a three-wire circuit	<u>с 1 с с с с с с с с с с с с с с с с с с</u>	3
Pt100 or Pt1000	└ <u></u>	4
Resistance transmitter	E E	4
	s s	3
	O A	2
pH/redox electrode		
Shield for pH	1	6
(with triaxial cable only !)		
Glass/metal electrode	°	
	o	7
Reference electrode	°	8
	o	
Liquid potential (LP)	o	9
bridge between		
terminal 8 and 9		
With symmetrical connection. LP		
on terminal 9		

Binary inputs		
Binary input 1	~~~~o	12+
	o	14
Binary input 2	~~~~	13+
	o	14

5.3.4 PSU board (row 3)

Function	Symbol	Terminal
Power supply for APM-1		
Power supply:	o	1 L1 (L+)
AC 110 - 240 V	o	2 N (L-)
Power supply:		
AC/DC 20 - 30 V		
n.c.	о О	4
	•	5
	o	6
Supply voltage for external 2-wi	re transmitter	
24 V DC (-15 / +20%)	o	8 L +
	o	9 L –
Relay 1		
Switching output K1	0 0	11
(floating)	о р	12
		13
Relay 2	00	
Switching output K2	0 0	15
(floating)		16
		17

Operation via the instrument keypad is described below.

Instrument operation via the optional set-up program, See section 14 "Setup program", page 88.

6.1 Controls

- (1) Measurement unit
- (2) Temperature
- (3) Operating mode
- (4) Measured value
- (5) **a** key Increase numerical value / Forward selection
- (6) **V** key Decrease numerical value / Forward selection
- (7) key Change level / Forward selection / Confirm selection
- (8) EVT key Cancel entry / Exit level

Display 6.2

Measuring mode (normal display) 6.2.1

Example

6.3 Principle of operation

6.3.1 Operation in levels

				See page
Meas	urement m	ode		
	Norm	al display		26
	Min/m	nax values o	of the main input	28
	Min/m	nax values o	of the optional inputs	29
	Outpu	ıt display		29
	Curre	nt values of	f the main input	29
	Curre	nt values of	f the input options	30
	Curre	nt values of	f the math channels	30
	States	s of the bina	ary inputs and outputs	30
	Manu	al mode ov	erview	31
	Hardv	vare inform	ation	31
	Instru	ment inforn	nation	32
	User o	data		89
	Calibr	ation (depe	ending on the basic setting)	46, 55, 60, 63
	Manu	al mode / s	imulation	35
	Hold ı	node		37
Main	menu			
	User I	evel		32
		Input	pH/redox	112
		Input	temperature	112
		Optio	onal inputs	113
			Analog input 1, 2, 3	
		Binar	y inputs	114
			Binary input 1, 2	
		Contr	rollers	115
			Controller 1	
			Parameter set 1, 2	
			Configuration	
			Controller 2	
			Parameter set 1, 2	
			Configuration	
			Controller special functions	117
		Limit	value control	117
			Limit value 1, 2, 3	
		Binar	y outputs	114
			Binary output 1, 2, 3, 8	
		Analo	binary output 1, 2, 3, 8 og outputs	119
		Analo	binary output 1, 2, 3, 8 og outputs Analog output 1, 2, 3	119
		Analo	Analog output 1, 2, 3, 8 Analog output 1, 2, 3 áce	119 120
		Analo Interf Wash	Analog output 1, 2, 3, 8 Analog output 1, 2, 3 ace	119 120 120

Delete total batch Calibration level	35 46, 55, 60
Main input	10, 00, 00
Zero point	
2-point	
3-point	
Optional input 1, 2, 3	113
Temperature coefficient, linear	
Temperature coefficient, curve	
Relative cell constant	
Zero point	
LImit point	
2-point	
Calibration logbook	79
Main input	
Optional input 1, 2, 3	
Instrument information	32

6.4 Measuring mode

Different display types can be configured, See "Display of measured values STANDARD" page 104.

To return to measuring mode:

press the $\ensuremath{\mbox{\tiny EXIT}}$ key or wait for a "timeout".

Measurements with "out of range" are ignored.

The min./max. value memory can be reset: Administrator level / Delete min/max.

When the basic setting is changed, the min and max values are deleted.

6.4.1 Normal display

Visualization

The following are displayed in measuring mode:

- Analog input signal
- Unit (for example pH)
- Temperature of the sample medium

- (1) MEASURING -> Measuring mode
- (2) 25.0°C -> Temperature of the sample medium
- (3) 7.70 pH -> Measurement value calculated from the standard signal at the input

6.5 Input/output information

¹Only if released

6.5.1 User data

Up to 8 parameters that are frequently changed by the user can be combined in the user level under "User data" (via setup program only).

Activating the display

The instrument is in measuring mode (normal display)

- **★** Briefly press the PGM key.
- * Select the required "quick setting" with the \blacktriangle and \bigtriangledown keys.

Editing

- **★** Briefly press the PGM key.
- ***** Edit the setting with the \blacktriangle and \bigtriangledown keys.

6.5.2 Min/max values of the main input

Activating the display

The instrument is in measuring mode (normal display)

★ Briefly press the ▲ or ▼ key (several times if necessary).
 Minimum and maximum values of the main value "1:" (pH, mV, %, ppm) and

temperature "T:" are displayed.

The extreme values of the main measurement variable and the temperature are **not** mutually assigned (for example not 5.03 pH for 25.0°C).

6.5.3 Min/max values of the optional inputs

Activating the display

The instrument is in measuring mode (normal display)

★ Briefly press the ▲ or ▼ key (several times if necessary).
 Minimum and maximum values of the optional inputs (1, 2 and 3) are displayed

6.5.4 Ooutput level

Activating the display

The instrument is in measuring mode (normal display)

★ Briefly press the ▲ or ▼ key (several times if necessary).
 The current output levels of the controller outputs.

6.5.5 Current values of the main entries

Activating the display

The instrument is in measuring mode (normal display)

 ★ Briefly press the or ▼ key (several times if necessary). The current values of the main output are displayed.

6.5.6 Current values of the optional entries

Activating the display

The instrument is in measuring mode (normal display)

★ Briefly press the ▲ or ▼ key (several times if necessary).
 The current values of the optional inputs (1, 2 and 3) are displayed.

6.5.7 Current values of the math channels

Activating the display

The instrument is in measuring mode (normal display)

 ★ Briefly press the ▲ or ▼ key (several times if necessary). The current values of the main output are displayed.

6.5.8 States of the binary inputs and outputs

Activating the display

The instrument is in measuring mode (normal display)

★ Briefly press the ▲ or ▼ key (several times if necessary. The states of binary inputs E1 and E2 and of relays K1 through K8 are displayed. In the example shown here, relay K1 is active.

6.5.9 Manual mode overview

Analog outputs (optional boards)

In this example, analog outputs 2 and 3 are working normally.

Switching outputs (PSU board and optional boards)

In this example relay output 2 is in manual mode.

The instrument is in "normal display" mode

***** Briefly press the \blacktriangle or \bigtriangledown key (several times if necessary).

Manual mode can only be displayed if at least one output is in manual mode. For example Administrator level / Parameter level / Binary outputs / Binary output 1 / Manual mode "Active" or "Simulation".

To return to measuring mode: press the Exit key or wait for a "timeout".

6.5.10 Hardware info

These displays are required for phone support.

The instrument is in measuring mode (normal display)

***** Press and hold the \mathbb{P} and \mathbb{A} keys.

Alternating display

OPTION 1	200.01.02
OPTION 2	
OPTION 3	193.02.01
BOOTLOADER	297.00.01

6.5.11 Device info

i

These displays provide an overview of fitted hardware options and the settings of inputs (helpful for troubleshooting, etc.).

- ★ Press the ^{PGM} key for longer than 3 seconds.
- ***** Briefly press the \blacktriangle or \bigtriangledown key (several times if necessary).
- * Select Device info

★ Press the PGM keys.

MAIN INP.	PH/REDOX !
OPTION 1:	ANALOGOUT
OPTION 2:	ANALOG IN 3
<u>OPTION 3:</u>	<u>DATALOG. :</u>

★ Briefly press the ▲ or ▼ key (several times if necessary).
 For further information about the inputs, press the ▲ or ▼ keys.

6.6 User level

All the parameters that the Administrator (See section 6.7 "Administrator level", page 33) has released can be edited at this level. All the other parameters (marked by a key \mathbf{T}) are read only.

- ***** Press the PGM key for longer than 2 seconds.
- * Select "USER LEVEL".

All possible parameters are accessed below. Depending on the configuration of a specific instrument, some of these parameters may not appear.

6.6.1 Parameters of the User level

See section 18.2 "Parameters of the User level", page 112.

6.7 Administrator level

- All the parameters can be edited at this level.
- At this level, it is also possible to define which parameters can be edited by a "normal" user (operator) and which calibrations can be performed.
- To get to the Administrator level, proceed as follows:
- ★ Press the PGM key for longer than 2 seconds.
- ★ Use the ▼ or ▲ keys to select "ADMINISTR. LEVEL".
- ***** Use the $\mathbf{\nabla}$ and $\mathbf{\Delta}$ keys to enter the password 300 (factory setting).
- * Confirm the PGM key.

6.7.1 Parameter level

The settings that can be made here are the same as those at the User level, See "User level" page 32. As the operator (user) has administrator rights here, the parameters that are locked in the User level can now also be modified.

6.7.2 Release level

All parameters can be released (modification possible) or locked (no modification possible) for editing at operator level.

6.7.3 Basic settings

The APM-1 has a basic setting wizard, to make it easier for the user to configure the extensive setting options of the instrument and to avoid configuration conflicts.

The basic settings are reached via ADMINISTR. LEVEL / PASSWORD / BASIC SETTING.

All the important settings are systematically polled here. At the end, once a request for conformation has been acknowledged, the instrument is initialized with the new settings. Dependent parameters are checked and adjusted.

Basic setting wizard

6.7.4 Calibration level

Depending on which operating mode has been configured (in the Basic setting menu), one or more of the following calibration options will be available:

- Zero point
- 2-point calibration (only with setting "pH STANDARD" and "pH ANTIMONY"
- 3-point calibration (only with setting "pH STANDARD" and "pH ANTIMONY"

6.7.5 Calibration release

Which calibration procedure may be performed directly and which may not can be configured here, See section 8.2.2 "Ways to start the calibration", page 47.

6.7.6 Delete min/max values

If required, the values can be deleted once a request for confirmation has been acknowledged.

See "Min/max values of the main input" page 28 or See "Min/max values of the optional inputs" page 29.

6.7.7 Delete logbook

The last five calibration processes for each input are archived in the calibration logbook. If a "Datalogger" optional board is fitted, the date and time are also archived.

If necessary the logbook can be deleted after a confirmation prompt.

6.7.8 Delete daily batch

If required, the counter can be deleted once a request for confirmation has been acknowledged.

6.7.9 Delete total batch

If required, the counter can be deleted once a request for confirmation has been acknowledged.

6.8 MANUAL mode / Simulation mode

These functions can be used to set the switching outputs and analog outputs of the instrument manually to a defined state. This facilitates dry startup, troubleshooting and customer service.

Simulation mode accesses the analog outputs and binary outputs **directly**. When simulation mode has been selected, MANUAL mode is **not** possible!

In MANUAL mode the settings for "higher order controllers" are taken into consideration.

6.8.1 MANUAL mode only via "higher order" controller functions

Select manual mode

In the factory setting of the instrument the MANUAL mode parameter is locked and can **only be activated by the administrator**!

This parameter must first be released for other users, See "Release level" page 33.

- Set ADMINISTR. LEVEL / PARAMETER LEVEL / CONTROLLER / CTRL.SPEC. FUNCT. / MANUAL MODE "Locked, Coding or Switching.
- Locked = No Manual mode, control is via device.
- Coding = The outputs are active as long as the $\mathbf{\nabla}$ or $\mathbf{\Delta}$ key is pressed.
- Switching = the outputs are active if the **▼** or **▲** key is pressed. If the corresponding key is pressed again, the output becomes inactive again.

Activate Manual mode

The instrument is in Display mode

 ★ Press the I and ▲ keys for less than 2 seconds. The word MANUAL appears in the status line of the display.

If the xer keys (alone) are pressed for longer than 3 seconds, the instrument switches to language selection!

If the \square and \blacksquare keys are pressed for longer than 3 seconds, the instrument goes into HOLD mode.

Then the outputs of the instrument respond according to the default settings.

To exit HOLD mode, press the \square and \blacktriangle keys for longer than 3 seconds.

Control is not longer via the instrument. The output level of the controllers is 0%.

Controller 1 is activated by the \blacktriangle key. In this case the output level of controller 1 is 100%.

Controller 2 is activated by the $\boxed{\mathbf{v}}$ key. In this case the output level of controller 2 is 100%.

Deactivation

★ Press the [∎] key.

Control is once again through the outputs of the instrument. The word MANUAL appears in the status line of the display.
6.8.2 Simulation of binary outputs

Activate simulation

In the factory setting of the instrument the MANUAL mode parameter is set to "No simulation" and can **only be activated by the administrator**! This parameter must first be released for other users, See "Release level" page 33.

If a higher order switching function has been assigned to an output, Simulation mode is not possible for that output.

 Set ADMINISTR. LEVEL / PARAMETER LEVEL / BINARY OUTPUTS / BINARY OUTPUT1(....8) "Manual mode no simulation, Inactive or Active".
 No simulation – No Manual mode, control is via device.

Inactive	= Relay K1 or K2 is de-energized; the word MANUAL				
	appears in the status line of the display				
Active	= Relay K1 or K2 is energized; the word MANUAL appears				
	in the status line of the display				

Deactivate manual mode

No simulation = No Manual mode, control is via device.

When the instrument is in display mode, the word MANUAL disappears from the status line of the display.

6.8.3 Simulation of analog outputs via MANUAL mode

Release and activation

 Select activation of simulation of the actual value output: ADMINISTR. LEVEL / PARAMETER LEVEL / ANALOG OUTPUTS / ANALOG OUTPUT 1 (2, 3) / SIMULATION / ON.

With "On" the output takes on the value of the "Simulation value" parameter.

When the instrument is in display mode, the word MANUAL appears in the status line of the display.

Deactivation

 ADMINISTR. LEVEL / PARAMETER LEVEL / ANALOG OUTPUTS / ANALOG OUTPUT 1 (2, 3) / SIMULATION / OFF.

The corresponding output of the instrument works again.

When the instrument is in display mode, the word MANUAL disappears from the status line of the display.

6.9 HOLD mode

In HOLD status the outputs take on the states programmed in the relevant parameter (controller channel, switching output or analog output).

This function can be used to "freeze" switching outputs and the analog

outputs of the instrument. This means the current status of the output will be retained even when the measured value changes. Control is not via the instrument.

If MANUAL mode is activated while HOLD mode is activated, MANUAL mode takes precedence and MANUAL then appears in the status line of the display! MANUAL mode can be terminated by pressing the Ext key. If HOLD mode is still activated (by the binary input or by keyboard), the

HOLD mode can be activated by pressing the key or by the binary input.

Activation by pressing key

 ★ Press and hold the EMT and ▲ keys longer than 3 seconds. Then the outputs of the instrument respond according to the default settings.

The word HOLD appears in the status line of the display.

instrument then returns to HOLD mode!

If the $\boxed{\text{BVT}}$ and $\boxed{\textbf{A}}$ keys are pressed for less than 3 seconds, the instrument goes into Manual mode.

Then the outputs of the instrument respond according to the default settings.

Pressing a key to deactivate HOLD mode

* Press the \square and \blacksquare keys for longer than 3 seconds.

If the \bowtie and \blacktriangle keys are pressed for less than 3 seconds, the instrument goes into Manual mode.

Then the outputs of the instrument respond according to the default settings.

Control is through the outputs of the instrument again. The word MANUAL disappears from the status line of the display.

7 Commissioning

7.1 Getting started

Some suggestions follow for configuring the instrument reliably in little time.

- * Mount the instrument, See section 4 "Assembly", page 14.
- * Install the instrument, See section 5 "Installation", page 15 ff.
- * Call up Administrator level (ADMINISTR. LEVEL).
- * Enter password 0300 (factory setting).
- * Call up PARAMETER LEVEL / DISPLAY / OPERAT. TIMEOUT.
- * Set OPERAT. TIMEOUT to 0 minutes (no timeout).
- * Leave the Display level with "EXIT"
- * Leave the Parameter level with "EXIT"
- Select BASIC SETTING and work through all the menu items, See section 6.7.3 "Basic settings", page 33.
- * Answer "YES" to the "Reinitialize device" query
- * Configure the required additional parameters.
- Calibrate the instrument to the sensor and sample medium, See section 8 "Calibrating a pH measurement chain", page 46 or See section 9 "Calibrating a redox measurement chain", page 55 or See section 10 "Calibrating an ammonia measuring cell", page 60 or See section 11 "Calibrating a sensor with a standard signal", page 63.

7.2 Setting examples

7.2.1 Measuring the pH value with pH combination electrode

pH measurement with automatic temperature compensation.

Layout

- (1) Transmitter/controller type APM-1
- (2) pH combination electrode on the main board
- (3) Coaxial cable
- (4) Two-wire shielded cable
- (5) Compensation thermometer Pt100 on the main board

Electrical connection

See section 5 "Installation", page 15.

Task

Measuring range:	2 - 12 pH
Output signal:	4 - 20 mA
Temperature measurement	Pt100
Control function:	Pulse width controller
Setpoint 1:	pH 6.5
Setpoint 2:	pH 8.5

7 Commissioning

Basic setting

Start the basic settingsSee section 6.7.3 "Basic settings", page 33 Diagrammatic overview, See section "Basic setting wizard", page 33.

Sensor	pH standard
Temperature compensation source	Temperature input
Reference monitoring	Off
Glass electrode monitoring	Off
Supply frequency	50 Hz
Reinitialize device	Yes

Temperature input

Administrator level / Password / Para	ameter level / Temperature input
Temperature sensor	Pt100

Analog output

Administrator level / Password / Parameter level / Analog outputs / Analog output 1

Signal source	Main variable
Signal type	4 - 20 mA
Start of scaling	2.00 pH
End of scaling	12.00 pH

Controller settings

See section 13.6.2 "Controller with PID behavior and pulse length output", page 86.

7.2.2 pH differential measurement

Both pH measurements are automatically temperature compensated.

Layout

- (1) Transmitter/controller type APM-1
- (2) pH combination electrode with 2-wire transmitter
- (2a) pH combination electrode on main board
- (3) Two-wire transmitter on optional board 1
- (4) Two-wire shielded cable
- (5) Compensation thermometer Pt100 on optional board 2
- (5a) Compensation thermometer Pt100 on main board
- (6) Coaxial cable

Electrical connection

See section 5 "Installation", page 15.

Task

Measurement range (main board): 2 - 12 pH Measurement range (optional board):2 - 12 pH Output signal (main board): 4 - 20 mA Temperature measurements Pt100 Actual value for the controller: main board

7 Commissioning

Limit value control:	
Limit value 1:	
Limit value 2:	

limit value function pH 6.5 pH 8.5

Basic setting of main board

Start the basic settingsSee section 6.7.3 "Basic settings", page 33 Diagrammatic overview, See section "Basic setting wizard", page 33.

Sensor	pH standard
Temperature compensation source	Temperature input
Reference monitoring	Off
Glass electrode monitoring	Off
Supply frequency	50 Hz
Reinitialize device	Yes

Input for main board temperature

Administrator level / Passwo	ord / Parameter level / Temperature input
Temperature sensor	Pt100

Analog output of main board

Administrator level / Password / Parameter level / Analog outputs / Analog
output 1Signal sourceMain variableSignal type4 - 20 mAStart of scaling2.00 pHEnd of scaling12.00 pH

Basic setting for optional board 1

Administrator level / Password / Parameter level / Optional inputs / Analog input 1

Operating mode	pH measurement
Signal type	4 - 20 mA
Start of scaling	-600 mV (depending on the two-wire transmitter)
End of scaling	+600 mV (depending on the two-wire transmitter)
Temperature compensation source	Optional input 2

Basic setting for optional board 2

Administrator level / Password / Parameter level / Optional inputs / Analog input 2

Operating mode Signal type Connection type Temperature Pt100 2-wire

Controller settings

See section 13.6.1 "Simple limit monitoring", page 85.

8.1 Notes

During calibration, relays and analog output signals adopt their configured states!

When is calibration required?

- At regular intervals (depending on the sample medium and requirements).
- If negative values appear in the top display.
- If the top display indicates "Underrange / Overrange".

Every successfully completed calibration is documented in the calibration logbook, see section 12 "Calibration logbook", page 79.

8.2 General information

The electrical properties of all sensors vary slightly from instance to instance and also change during operation (due to deposits or wear, etc.). This causes the output signal of the sensor to change.

The transmitter uses a typical, concentration-dependent characteristic to measure ammonia with "normal" accuracy requirements. The individual properties of the sensor are taken into account here by offsetting the zero point. This considerably reduces the effort required for calibration.

The transmitter software is specially adapted for coolant monitoring.

8.2.1 Requirements

- The instrument must be supplied with voltage, see section 5 "Installation", page 15 ff.
 - A combination electrode must be connected to the transmitter.

For a configuration example see section 7.2.1 "Measuring the pH value with pH combination electrode", page 41.

A pH sensor can be connected to the optional board

- connected directly to the main input or
- connected to the "Analog input (universal)" optional board via a 2-wire transmitter.
- "PH STANDARD" must be configured as sensor in the basic setting.
- The instrument is in Measurement mode.

8.2.2 Ways to start the calibration

Select the input to which the pH sensor is connected.

If Calibration level is not released

 Press the Method key for longer than 3 seconds / ADMINISTR. LEVEL / PASSWORD / CALIBR. LEVEL / MAIN INPUT or ANALOG INPUT.

If Calibration level is released

- Press the m and v keys simultaneously / MAIN INPUT or ANALOG INPUT.

If Calibration level is released

- Press the Main Key for longer than 3 seconds / CALIBR. LEVEL / MAIN INPUT or ANALOG INPUT.

8.2.3 Calibration options

The instrument provides two calibration options for adapting the APM-1 to a pH combination electrode:

One-point offset calibration

The zero point of the pH combination electrode is calibrated, see section 8.3 "Zero point (1-point) calibration", page 48.

Recommended only for special applications, such as ultra-pure water.

Two-point calibration

The zero point and slope of the combination electrode are calibrated, see section 8.4 "2-point calibration", page 49.

This is the recommended calibration for most sensors.

Three-point calibration

In three-point calibration, the zero point and the slope are calibrated in the acidic range and the slope is calibrated in the alkaline range, see section 8.4 "2-point calibration", page 49.

This calibration is recommended with heightened requirements for accuracy.

8.3 Zero point (1-point) calibration

- * Make preparations, see section 8.2 "General information", page 46.
- * Start calibration, see section 8.2.2 "Ways to start the calibration", page 47.
- * Select zero point calibration.

- Immerse the combination electrode in a buffer solution with a known pH value.
- * Start the zero point calibration with the mukey.

Now the source of temperature acquisition can be selected (manually, or using the temperature input of the basic board, or the temperature input via the optional board). This source will be active for the duration of the calibration.

An example follows: Manual temperature entry:

★ With manual temperature entry, use the ▼ and ▲ keys to set the calibration solution temperature and confirm your entry with the key.

★ Wait until the display value has stabilized; then press
imit to continue.

* Set the displayed value to the buffer solution value with the $\mathbf{\nabla}$ or $\mathbf{\Delta}$ keys;

★ Use the May to accept the zero point or the May to reject it.

The instrument returns to measuring mode.

8.4 2-point calibration

The buffer solutions (reference solutions) used for calibration must differ by at least 2 pH!

During the calibration, the temperature of the two buffer solutions must be identical and remain constant!

- * Make preparations, see section 8.2 "General information", page 46.
- * Start calibration, see section 8.2.2 "Ways to start the calibration", page 47.
- ***** Select 2-point calibration.

- Immerse the combination electrode in the first buffer solution with the known pH value.
- * Start the two-point calibration with the m key.

Now the source of temperature acquisition can be selected (manually, or using the temperature input of the basic board, or the temperature input via the optional board). This source will be active for the duration of the calibration.

An example follows: Manual temperature entry:

★ With manual temperature entry, use the ▼ and ▲ keys to set the calibration solution temperature and confirm your entry with the ∞ key.

★ Wait until the display value has stabilized; then press to continue.

★ Set the displayed value to the value of the first buffer solution with the and keys; then press to continue.

- * Rinse and dry the pH combination electrode.
- * Immerse the pH combination electrode in the second buffer solution.
- * Wait until the display value has stabilized; then press Minimum to continue.

* Set the displayed value to the second buffer solution value with the V or

keys; then press M to continue.

The zero point and slope determined by the instrument are displayed.

★ Use the key to accept the calibrated values or reject them with the key.

The instrument returns to measuring mode.

8.5 3-point calibration

The buffer solutions (reference solutions) used for calibration must have the following values:

Buffer solution 1: in the neutral range (if possible precisely 7 pH) Buffer solution 2: Greater than 9 pH Buffer solution 3: Less than 5 pH

The temperature of the buffer solutions must be equal and remain constant during calibration!

The buffer solutions can be used in any order during the calibration.

- * Make preparations, see section 8.2 "General information", page 46.
- * Start calibration, see section 8.2.2 "Ways to start the calibration", page 47.
- ***** Select 3-point calibration.

* Immerse the combination electrode in the first buffer solution with the known pH value.

★ Start the 3-point calibration with the mikey.

Now the source of temperature acquisition can be selected (manually, or using the temperature input of the basic board, or the temperature input via the optional board). This source will be active for the duration of the calibration.

An example follows: Manual temperature entry:

★ With manual temperature entry, use the ▼ and ▲ keys to set the calibration solution temperature and confirm your entry with the key.

★ Wait until the display value has stabilized; then press
will to continue.

★ Set the displayed value to the value of the first buffer solution with the and keys; then press im to continue.

- ***** Rinse and dry the combination electrode.
- Immerse the combination electrode in the second buffer solution with the known pH value. Wait until the display value has stabilized; then press to continue

* Set the displayed value to the second buffer solution value with the V or

keys; then press M to continue.

- * Rinse and dry the combination electrode.
- Immerse the combination electrode in the third buffer solution with the known pH value. Wait until the display value has stabilized; then press to continue.

★ Set the displayed value to the third buffer solution value with the ▼ and
 ▲ keys; then press [™] to continue.

The zero point of the combination electrode determined by the instrument and its slope in the acidic and alkaline ranges of the characteristic curve are also displayed.

★ Use the rew key to accept the calibrated values or reject them with the rew key.

The instrument returns to measuring mode.

8.6 pH Antimony measurement chain

Antimony measurement chains are calibrated similarly to "normal" pH measurement chains.

- General information on calibration See "General information" page 46.
- Zero point calibration see section 8.3 "Zero point (1-point) calibration", page 48.
- 2-point calibration see section 8.4 "2-point calibration", page 49.
- 3-point calibration see section 8.5 "3-point calibration", page 51.

8.7 ISFET pH combination electrodes

ISFET pH combination electrodes are calibrated similarly to "normal" pH measurement chains.

- General information on calibration See "General information" page 46.
- Zero point calibration see section 8.3 "Zero point (1-point) calibration", page 48.
- 2-point calibration see section 8.4 "2-point calibration", page 49.
- 3-point calibration see section 8.5 "3-point calibration", page 51.

9.1 Notes

During calibration, relays and analog output signals adopt their configured states!

When is calibration required?

- At regular intervals (depending on the sample medium and requirements).
- If negative values appear in the top display.
- If the top display indicates "Underrange / Overrange".

Every successfully completed calibration is documented in the calibration logbook, see section 12 "Calibration logbook", page 79.

9.2 General information

The electrical properties of all sensors vary slightly from instance to instance and also change during operation (due to deposits or wear, etc.). This changes the output signal of the sensor.

9.2.1 Requirements

- The instrument must be supplied with voltage, see section 5 "Installation", page 15 ff.
- A redox sensor must be connected to the transmitter.

For a configuration example see section 7.2.1 "Measuring the pH value with pH combination electrode", page 41.

A redox sensor can be

- connected directly to the main input or
- connected to the "Analog input (universal)" optional board via a 2-wire transmitter.

A temperature compensation is **not** performed during the measurement of the redox potential!

- "REDOX" must be configured as sensor in the basic setting.
- The instrument is in Measurement mode.

9.2.2 Ways to start the calibration

Select the input to which the pH sensor is connected.

If Calibration level is not released

 Press the end key for longer than 3 seconds / ADMINISTR. LEVEL / PASSWORD / CALIBR. LEVEL / MAIN INPUT or OPTION INPUT.

If Calibration level is released

- Press the Rew and V keys simultaneously / MAIN INPUT or OPTION INPUT.

If Calibration level is released

- Press the product key for longer than 3 seconds / CALIBR. LEVEL / MAIN INPUT or OPTION INPUT.

9.2.3 Calibration options

The instrument offers two calibrating options for adjusting it to the redox measurement chain.

- One-point calibration If "mV" was configured as UNIT.
- One-point calibration
 - If "mV" or "CUST. SPECS." was configured as UNIT.

One-point offset calibration

The zero point of the pH combination electrode is calibrated, see section 8.3 "Zero point (1-point) calibration", page 48.

Recommended only for special applications, such as ultra-pure water.

Two-point calibration

The zero point and slope of the combination electrode are calibrated, see section 8.4 "2-point calibration", page 49.

This is the recommended calibration for most sensors.

9.3 Zero-point calibration (one-point offset calibration)

Zero point calibration is only available if the unit is configured as "mV"!

- * Make preparations, see section 9.2 "General information", page 55.
- * Start calibration, see section 9.2.2 "Ways to start the calibration", page 56.
- * Select zero point calibration.

- Immerse the combination electrode in a test solution with a known redox potential.
- * Start the zero point calibration with the PGM key.

Wait until the display value has stabilized; then press M to continue.

★ Set the displayed value to the test solution value with the ▼ or ▲ keys; then press ^{PGM} to continue.

The zero point determined by the instrument is displayed.

★ Use the rem key to accept the value or the Ext key to reject it.

The instrument returns to measuring mode.

Calibration is complete

After rinsing, the combination electrode can again be used to take measurements.

9.4 2-point calibration

This procedure can be used to scale the absolute input signal (mV) to a displayed relative value (%). That greatly simplifies the evaluation of the measured value (good / bad).

Two-point calibration is only available if the unit is configured as "%" or "Cust. specs."!

- * Make preparations, see section 9.2 "General information", page 55.
- * Start calibration, see section 9.2.2 "Ways to start the calibration", page 56.
- ***** Select 2-point calibration.

- Immerse the combination electrode in a solution with a known "good" redox potential.
- * Start the 2-point calibration with the RM key. Wait until the display value has stabilized; then press RM to continue.

★ Set the displayed value to the relative "good" value (in this example 20%) with the ▼ and ▲ keys; then press ™ to continue.

- * Rinse and dry the redox combination electrode.
- ★ Immerse the combination electrode in a solution with a known "bad" redox potential. Wait until the display value has stabilized; then press red to continue.

★ Set the displayed value to the relative "bad" value (in this example 80%) with the ▼ and ▲ keys; then press ™ to continue.

* The zero point and slope determined by the instrument are displayed.

★ Use the ^{PGM} key to accept the calibrated values or reject them with the ^{EXT} key.

The instrument returns to measuring mode.

Calibration is complete

After rinsing, the combination electrode can again be used to take measurements.

10 Calibrating an ammonia measuring cell

10.1 Notes

During calibration, relays and analog output signals adopt their configured states!

i

When is calibration required?

- At regular intervals (depending on the sample medium and requirements).
- If negative values appear in the top display.
- If the top display indicates "Underrange / Overrange".

Every successfully completed calibration is documented in the calibration logbook, see section 12 "Calibration logbook", page 79.

10.2 General information

The electrical properties of all sensors vary slightly from instance to instance and also change during operation (due to deposits or wear, etc.). This changes the output signal of the sensor.

The transmitter uses a typical, concentration-dependent characteristic to measure ammonia with "normal" accuracy requirements. The individual properties of the sensor are taken into account here by offsetting the zero point. This considerably reduces the effort required for calibration.

The transmitter software is specially adapted for coolant monitoring.

10.2.1 Requirements

- The instrument must be supplied with voltage, see section 5 "Installation", page 15 ff.
- An ammonia sensor must be connected to the transmitter.

For a configuration example see section 7.2.1 "Measuring the pH value with pH combination electrode", page 41.

An ammonia sensor can be

- connected directly to the main input or
- connected to the "Analog input (universal)" optional board via a 2-wire transmitter.
- "AMMONIA" must be configured as sensor in the basic setting.

10.2.2 Ways to start the calibration

Select the input to which the sensor is connected.

If Calibration level is not released

- Press the Rev for longer than 3 seconds / ADMINISTR. LEVEL / PASSWORD / CALIBR. LEVEL / OPTIONAL INPUT.

If Calibration level is released

- Press the M and V keys simultaneously / OPTION INPUT.

If Calibration level is released

- Press the Rev for longer than 3 seconds / CALIBR. LEVEL / OPTION INPUT.

10.3 Zero point (1-point) calibration

- The transmitter is in "Measuring mode".

- ***** Immerse the combination electrode in a solution **without ammonia**.
- * Make preparations, See "Requirements" page 60.
- * Start calibration, See "Ways to start the calibration" page 61.

* Start the zero point calibration with the Merikey.

Now the source of temperature acquisition can be selected (manually, or using the temperature input of the basic board, or the temperature input via the optional board). This source will be active for the duration of the calibration.

An example follows: Manual temperature entry:

10 Calibrating an ammonia measuring cell

★ With manual temperature entry, use the ▼ and ▲ keys to set the solution temperature and confirm your entry with the ∞ key.

* Wait until the display value has stabilized; then press Imm to continue

* Wait until the display value has stabilized; then press Find to continue.

★ Use the read key to accept the calibration result or the read key to reject it.

The instrument returns to measuring mode.

Calibration is complete

After rinsing, the sensor can again be used to take measurements.

11.1 General information

During calibration, relays and analog output signals adopt their configured states!

Sensors with a standard signal output can only be connected to an "Analog input (universal)" optional board!

The sensors connected to the instrument should be cleaned and the instrument itself calibrated, at regular intervals (subject to the sample medium).

Every successfully completed calibration is documented in the calibration logbook, See section 12 "Calibration logbook", page 79.

11.1.1 Operating modes

The operating mode selection depends on which sensor (transmitter) is connected.

Linear operating mode

For example sensor for free chlorine, redox, pressure, liquid level or humidity

pH operating mode

For example pH sensor

Conductivity operating mode

For example sensor for conductivity, concentration

Customer specs.

For sensors with non-linear characteristics. Up to xx interpolation points can be defined in an instrument table. This allows for an excellent approximation of a non-linear characteristic.

Chlorine, pH and temperature-compensated

Combination of chlorine sensor and pH sensor and temperature sensor. The measured value for chlorine often depends to a great extent on the pH value of the solution.

The chlorine measurement is compensated depending on the pH value in this operating mode. The pH measurement is temperature-compensated

11.1.2 Calibration options

Operating mode	Calibration options					Page
	1-point	2-point	Limit point	Rel. cell const.	Temp. coeffic.	
Linear	Х	Х	Х	-	-	65
рН	Х	Х	-	-	-	69
Conductivity	-	-	-	Х	Х	70
Concentration	-	-	-	Х		76
Customer specs.	Due to the table with interpolation points, no calibration is required					
Chlorine, pH-compensated	-	-	X	-	-	77

Different calibration options are available depending on the operating mode.

- With **one-point (offset) calibration**, the zero point of the sensor is calibrated.
- With **two-point calibration**, the zero point and slope of the sensor are calibrated. This is the recommended calibration for most sensors.
- With one-point final value calibration, the slope of the sensor is calibrated. This is the recommended calibration for chlorine sensors, for example.
- Calibration of relative cell constant With conductivity measuring cells only.
- Calibration of the temperature coefficient With conductivity measuring cells only.

11.1.3 Ways to start the calibration

Select the input to which the sensor is connected.

If Calibration level is not released

- Press the Rew key for longer than 3 seconds / ADMINISTR. LEVEL / PASSWORD / CALIBR. LEVEL / OPTIONAL INPUT.

If Calibration level is released

- Press the Imm and I keys simultaneously / OPTION INPUT.

If Calibration level is released

 Press the end key for longer than 3 seconds / CALIBR. LEVEL / OPTION INPUT.

11.2 Linear operating mode

11.2.1 1-point calibration

This example is based on a liquid level measurement (as a %). The input signal is provided by a pressure transmitter.

- The transmitter is in "Measuring mode".

- Now bring the system to a defined state (e.g. when measuring liquid level, empty the container).
- * Start the calibration, See "Ways to start the calibration" page 64.
- * Select the zero point calibration with the Rew key.

* Wait until the display value has stabilized; then press FGM to continue.

Set the displayed value to the required value (usually 0%) with the \blacksquare and \blacksquare keys; then press Point to continue.

The zero point determined by the instrument is displayed.

11 Calibrating a sensor with a standard signal

Use the red key to accept the value or the red key to reject it. The instrument returns to measuring mode.

Calibration is complete

After rinsing, the sensor can again be used to take measurements.

11.2.2 Two-point calibration

The values determined during calibration (zero point and slope) work out as follows:

 $Display = \frac{Input value}{Slope} + Zero point$

This example is based on a liquid level measurement. The input signal is provided by a pressure transmitter.

- The transmitter is in "Measuring mode".

- Now bring the system to a defined state (e.g. when measuring liquid level, empty the container).
- * Start the calibration, See "Ways to start the calibration" page 64.
- ★ Select the 2-point calibration with the ^{Pem} key.

★ Wait until the display value has stabilized; then press to continue.

★ Set the displayed value to the required value (usually 0) with the ▼ and
 ▲ keys; then press P to continue.

Now bring the system to a second defined state (e.g. when measuring liquid level, container full).
Wait until the diaplace shall be atabilized, then press for the second defined state.

Wait until the display value has stabilized; then press $\fbox{\sc prod}$ to continue

★ Set the displayed value to "Maximum" (usually 100%) with the ▼ and ▲ keys; then press ™ to continue.

The zero point and slope determined by the instrument are displayed.

11 Calibrating a sensor with a standard signal

- ★ Use the Pew key to accept the calibrated values or reject them with the Ever key.
- ***** The instrument returns to measuring mode.

Calibration is complete

After rinsing, the sensor can again be used to take measurements.

11.2.3 Calibration end point

This example is based on a measurement of free chlorine. The input signal is provided by a corresponding transmitter.

The transmitter is in "Measuring mode".

- The process must now be brought to the state that is as relevant as possible to the final value (e.g. when measuring chlorine, the required concentration).
- * Start the calibration, See "Ways to start the calibration" page 64.
- * Select the limit point calibration with the m key.

* Wait until the display value has stabilized; then press Min to continue.

Set the displayed value to the measured reference value with the \blacksquare or \blacksquare keys; then press \bowtie to continue.

The slope determined by the instrument is displayed.

★ Use the Image key to accept the value or the Image key to reject it.

* The instrument returns to measuring mode.

Calibration is complete

After rinsing, the sensor can again be used to take measurements.

11.3 pH operating mode

11.3.1 Zero point (1-point) calibration

This example is based on a glass combination electrode with a connected two-wire transmitter.

The transmitter is in "Measuring mode".

Perform calibration, See section 8.3 "Zero point (1-point) calibration", page 48.

11 Calibrating a sensor with a standard signal

11.3.2 2-point calibration

This example is based on a glass combination electrode with a connected two-wire transmitter.

The transmitter is in "Measuring mode".

* Perform calibration, See section 8.4 "2-point calibration", page 49.

11.4 Conductivity operating mode

11.4.1 Calibration of the relative cell constant

This example is based on a conductivity cell with a connected two-wire transmitter.

The transmitter is in "Measuring mode".

- Immerse the conductivity sensor in a reference solution with a known conductivity.
- * Start the calibration, See "Ways to start the calibration" page 64.
- ***** Select REL. CELL CONST.
- ★ Press the PGM key.

* When the measured value is stable, press the rem key

* The measured conductivity value flashes on the display.

- ***** Use the \mathbf{V} or \mathbf{A} keys to set the value to the actual conductivity.
- ★ Press the May;

the relative cell constant determined by the instrument is displayed (as a %).

 ★ Use the Rem key to accept the temperature coefficient or the ENT key to reject it.

The current measurement value and the temperature are displayed.

Calibration is complete

After rinsing, the sensor can again be used to take measurements.

11.4.2 Calibration of the temperature coefficient

Linear temperature coefficient

This example is based on a conductivity cell with a connected two-wire transmitter.

The transmitter is in "Measuring mode".

* Immerse the conductivity sensor in the sample medium.

Start the calibration, See "Ways to start the calibration" page 64. ***** Select "LINEAR TEMP. COEF.".

The current sensor temperature flashes in the display (1).

The working temperature must be at least 5°C above or below the reference temperature (25.0°C).

 Enter the required working temperature and confirm your entry. The LC display now shows the selected working temperature (flashing) (2).

★ Press the ^{PGM} key.

The conductivity (399 μ S/cm) at the current temperature (24.3°C) now appears on the right of the LC display.

The temperatures T1 (25°C) and T2 (70.0°C) that have yet to be triggered are shown on the left.

- ★ Press the PGM key.
- ***** Heat the sample medium until the working temperature is reached.

During calibration, the rate of temperature change in the measurement solution must not exceed 10°C/min.

Calibration is also possible in the cooling process (with a falling temperature). It starts above the working temperature and ends below the working temperature.

As soon as the temperature of the sample medium exceeds T1 (25°C), this is hidden on the display. The uncompensated conductivity at the current temperature is displayed on the right.

If the temperature of the medium exceeded T2 (73.0°C), the instrument determines the temperature coefficient.

The LC display now shows the determined temperature coefficient as %/K.

 ★ Use the PGM key to accept the temperature coefficient or the ENT key to reject it.

The transmitter is in "measuring mode" and displays the compensated conductivity of the solution.

Calibration is complete

After rinsing, the sensor can again be used to take measurements.

With non-linear temperature coefficient (TEMP. COEF. CURVE)

This example is based on a conductivity cell with a connected two-wire transmitter.

The non-linear temperature coefficient can **only** be calibrated with a rising temperature!

The start temperature **must be below** the configured reference temperature (usually 25°C)!

The "TEMP.COEF. CURVE" menu item is only displayed if a temperature sensor is connected and "TEMP.COEF. CURVE" is configured as the type of temperature compensation.

The transmitter is in "Measuring mode".

* Immerse the conductivity sensor in the sample medium.

Start the calibration, See "Ways to start the calibration" page 64.

* Select "TEMP. COEF. CURVE " and press the PGM key.

* Enter the required start temperature (1) for the temp. coef. curve.

* Enter the required end temperature (2) for the temp. coef. curve.

- * Heat the sample medium continuously
 - (3) the current uncompensated conductivity
 - (4) the current temperature of the sample medium
 - (5) the first target temperature

During calibration, the rate of temperature change in the measurement solution must not exceed 10° C/min.

During the calibration process, the instrument displays values for the following five temperature interpolation points.

The end temperature has been reached

Use the Pem key to accept the temperature coefficients or the Ext key to reject the calibration result.

The LC display now shows the determined temperature coefficients as %/K.

★ Use the Prom key to accept the temperature coefficients or the Ext key to reject the values.

The transmitter is in "measuring mode" and displays the compensated conductivity of the solution.

Calibration is complete

After rinsing, the sensor can again be used to take measurements.

11.5 Concentration operating mode

11.5.1 Calibration of the relative cell constant

This example is based on a conductivity cell with a connected two-wire transmitter.

The conductivity of a caustic solution is converted into a concentration value [%] by the instrument.

The transmitter is in "Measuring mode".

- Immerse the conductivity sensor in a sample medium with a known conductivity.
- * Start the calibration, See "Ways to start the calibration" page 64.
- ✤ Press the Mey.

The measured conductivity value is displayed.

- * Wait until the measurement value has stabilized.
- ✤ Press the Main key.

***** Use the \blacksquare and \blacksquare keys to set the value to the actual conductivity.

★ Press the relative cell constant determined by the instrument is displayed (as a %).

 ★ Use the PGM key to accept the relative cell constant or the EMT key to reject the values.

The transmitter is in "measuring mode" and displays the compensated conductivity of the solution.

Calibration is complete

After rinsing, the sensor can again be used to take measurements.

11.6 Chlorine measurement operating mode, pHcompensated

11.6.1 Final value calibration

The pH signal and temperature signal are supplied via the main input, the chlorine signal (standard signal) via the optional input.

- The transmitter is in "Measuring mode".

Calibrate pH sensor

 Perform calibration, See section 8 "Calibrating a pH measurement chain", page 46.

Calibrate chlorine sensor

- The process must now be brought to the state that is as relevant as possible to the final value (e.g. when measuring chlorine, the required concentration).
- * Start the calibration, See "Ways to start the calibration" page 64.
- * Select the limit point calibration with the EM key.

* Wait until the display value has stabilized; then press PGM to continue.

Set the displayed value to the measured reference value with the \blacksquare or \blacksquare keys; then press \bowtie to continue.

The slope determined by the instrument is displayed.

***** Use the rest key to accept the value or the rest key to reject it.

The instrument returns to measuring mode.

Calibration is complete

After rinsing, the sensor can again be used to take measurements.

12.1 General information

The characteristic data for the last 5 successful calibration processed are documented in the calibration logbook.

Calling up

The instrument is in Measurement mode.★ Press the ^{Pow} key for longer than 3 seconds.

Select input

Briefly press the Mey.

MAIN	INPUT	×
OPT.	INPUT 1	\rightarrow
OPT.	INPUT 2	>
IOPT.	INPUT 3	>

Most recent successful calibration

The "time stamp" in the following screen printouts (top left, for example 11-06-06 12:02) only appear if optional slot 3 is fitted with the "Datalogger with interface RS485"!

★ Briefly press the **▼** key.

00000 HRS.		∎
ZERO POINT	6.95 pH	
SLOPE ACID	100.7 %	
SLOPE ALCA	101.7 %	

Next most recent successful calibration

★ Briefly press the ▼	key.	
00000 HRS. ZERO POINT SLOPE	7.05 pH 98.4 %	
		=

12 Calibration logbook

Next most recent successful calibration

13.1 General information

Apart from faulty installation, incorrect settings on the instrument may also affect the proper functioning of the subsequent process or lead to damage. You should therefore always provide safety equipment that is independent of the instrument and it should only be possible for qualified personnel to make settings.

13.2 Controller functions

"Software" control functions are assigned to "Hardware" outputs for this instrument.

- 1 Software controller for "simple" switching functions (e.g. alarm control)
- 2 Software controller for "higher order" switching functions (e.g. PID controller)
- 3 "Switching" hardware output (e.g. relay)
- 3 "Continuous" hardware output (analog output)

13.2.1 Simple switching functions

Up to four switching functions can be set (limit value 1, 2, 3, 4) ADMINISTR. LEVEL / PARAMETER LEVEL / LIMIT VALUE CONTR. / LIMIT VALUE x.

13.2.2 Higher order switching functions (PID)

Higher order switching functions are configured at the parameter level via the parameters of "Controller 1 or 2".

ADMINISTR. LEVEL / PARAMETER LEVEL / CONTROLLER / CONTROLLER 1(2) / CONFIGURATION / CONTROLLER TYPE / e.g. PULSE LENGTHS

13 Controller

13.2.3 Typical operator level parameters

Binary outputs	Explanation
Signal source	
No signal	No switching function desired
Limit control 1 to 4	"Simple" switching functions
Alarm function (AF1)	<u></u>
Alarm function (AF2)	
Alarm function (AF7)	
Alarm function (AF8)	
Controller 1(2)	"Higher order" switching functions
Limit value	
Pulse width	
Pulse frequency	
Steady	
Modulating	

13.3 Software controllers and outputs

Simple controller functions

a Analog output

If "Simple controller functions" have been configured, only the digital outputs can be controlled!

The operator must configure which of the digital outputs will be controlled - the main board or optional board 1, 2 or 3 $\,$

Higher order controller functions

- 1 Main board
- 2 Optional board
- L Simple controller
- H Higher order controller
- d Digital output
- a Analog output

If "higher order controller functions" have been configured, both the digital outputs and the analog outputs can be controlled.

The operator must configure which of the outputs will be controlled - the main board or optional board 1, 2 or 3.

Additional explanations, See section 18.1 "Glossary", page 102.

13.4 Configuration of higher order controllers

13.4.1 Structure

13.5 Parameter sets

Different process steps may require different controller settings. The instrument offers the option of creating two parameter sets and then switching between them by means of a binary input.

Defining a parameter set

ADMINISTR. LEVEL / PARAMETER LEVEL / CONTROLLER / 1(2) / PARAMETER SET 1(2) See "Controllers" page 115.

Configuring parameter set switchover

ADMINISTR. LEVEL / PARAMETER LEVEL / BINARY INPUTS / BINARY INPUT 1(2) / PARAMET. SWITCHOVER

See "Binary inputs" page 114.

13.6 Sample configurations

13.6.1 Simple limit monitoring

Configuration

Limit monitoring

Limit value 1 Signal source: Switching function: Switching point : Hysteresis:

Main value Alarm function (AF8) 6.50 pH 0.50 pH

Limit value 2

Signal source:	Main value
Switching function:	Alarm function (AF7)
Switching point :	8.50 pH
Hysteresis:	0.50 pH

Configuration of binary output, e.g. relay)

Binary outputs	
Binary output 1	
Signal source:	Limit monitoring 1
At calibration:	Standard operation
Error:	Inactive
HOLD mode:	Frozen
Turn-on delay:	0 seconds
Turn-off delay:	0 seconds
Wiper time:	0 seconds
Manual mode:	No simulation

Binary output 2

Signal source:	Limit monitoring 2
At calibration:	Standard operation
Error:	Inactive
HOLD mode:	Frozen
Turn-on delay:	0 seconds
Turn-off delay:	0 seconds
Wiper time:	0 seconds
Manual mode:	No simulation

13.6.2 Controller with PID behavior and pulse length output

Configuration of software controllers

Pulse lengths
Main value
No signal
No signal
No signal
Min. contact
Active contact
0 %
0 %
0 %
Off
As required
As required
6.50 pH
As required

Controller 2 Configuration

-	
Controller type:	Pulse lengths
Controller actual value ¹ :	Main value
Stroke retransmission ¹ :	No signal
Additive disturbance ¹ :	No signal
Multiplicative disturbance ¹ :	No signal
Min./max. contact:	Max. contact
Inactive/active contact:	Active contact

¹ This parameter only appears if "Separate controllers" has been configured in special controller functions.

HOLD mode	0 %
HOLD output:	0 %
Error:	0 %
Alarm control:	Off
Parameter set 1	
Min. setpoint:	As required
Max. setpoint:	As required
Setpoint:	8.50 pH
Proportional range:	As required
Reset time:	As required
Rate time:	As required
Period time:	As required
Output limit:	As required
Min. turn-on time:	As required
Alarm tolerance:	As required
Alarm delay:	As required

Configuration of binary output, e.g. relay)

Binary outputs	
Binary output 1	
Signal source:	Controller 1 output 1
Binary output 2	
Signal source:	Controller 2 output 1

14.1 Configurable parameters

Both the setup program (ACM-Soft) and the PC interface cable with USB/ TTL converter (ACM-Int) are available as options and provide a convenient way to adapt the transmitter to meet requirements:

- Setting the measuring range.
- Setting the behavior of outputs wh en the measuring range is exceeded.
- Setting the functions of switching outputs K1 to K8.
- Setting the functions of the binary inputs.
- Setting a customized characteristic
- etc.

Data can only be transferred from or to the transmitter if it is supplied with voltage, See section 5 "Installation", page 15ff.

Connection

- (1) APM-1
- (2) PC interface cable with USB/TTL converter, Sales no.: ACM-Int
- (3) PC or notebook

14.2 Documenting the instrument configuration

- * Start the setup program
- ***** Establish the connection to the instrument (1).

Read the instrument configuration (2).

(2) (1) Datei-Info-Kopf: (2) Geriferame: (1) Geriferame: (1) Geriferame: (2) Geriferame: (1) Geriferame: (1) Geriferame: (2) Geriferame: (2) Geriferame: (2) Geriferame: (2) Vin: (2) Kuzinki: (2) Barbeir: (2) Typensolizaci (2) Zuestrink: (2) Hardoware / Grundeinstellung: (2) Princeste Status: (2) Optionsetectylet: (2)	1
Image: Second	_
Image: Standard Standard Elektrode Contained Electrode Co	_
Image: Second Stress Image: Second Stress <td< td=""><td></td></td<>	
Image: Senderd Elektrode Image: Senderd Elektrode	_
Datei-Info-Kopf: Gerätersame: Granding Autoria Gerätersame: Operation Gerätersame: Operation:	
Datei-Info-Kopf: Gerätename: dTRANS02 Gerätename: dTRANS02 Gerätename: dTRANS02 Serätename: dTRANS02 Serä	
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	_
]
DĞ∎ Q≜ <u>≬ ∽∼ 25000 N2</u> ≣	
😏 Datei Editieren Datentransfer Extras Fenster Info	

14 Setup program

14.3 Special features for "Datalogger"

- * Start the setup program
- * Establish the connection to the instrument (1).
- ***** Read the instrument configuration (2).

Auswahl der zu übertragenden Daten	×
Zu übertragende Daten	
Setup-Daten	
☑ Datenlogger	
Alles auswählen Auswahl aufheben OK Abbrecher	

* Export data (for processing in an external program).

	Gerätekennung: yyyyyyyyyyyyyyyyyyyyy													
	Datum	Zeit	Analogwert 1	Einheit 1	Analogwert 2	Einheit 2	Analogwert 3	Einheit 3	Analogwert 4	Einheit 4	Binärausgang 1	Binärausgang 2	Binärausgang 3	Binärausgang 4
1	07.06.2011	14:32:01	7.021104	pН	25	°C	0	%	0	%	0	0	0	0
2	07.06.2011	14:31:01	7.020878	pН	25	°C	0	%	0	%	0	0	0	0
3	07.06.2011	14:30:01	7.021447	pН	25	°C	0	%	0	%	0	0	0	0
4	07.06.2011	14:29:01	7.020861	pН	25	°C	0	%	0	%	0	0	0	0
5	07.06.2011	14:28:01	7.020949	pН	25	°C	0	%	0	%	0	0	0	0
6	07.06.2011	14:27:01	7.020753	pН	25	°C	0	%	0	%	0	0	0	0
7	07.06.2011	14:26:01	7.020559	pН	25	°C	0	%	0	%	0	0	0	0
8	07.06.2011	14:25:01	7.020248	pН	25	°C	0	%	0	%	0	0	0	0
9	07.06.2011	14:24:01	7.020679	pН	25	°C	0	%	0	%	0	0	0	0
10	07.06.2011	14:23:01	7.020659	pН	25	°C	0	%	0	%	0	0	0	0
11	07.06.2011	14:22:01	7.020184	nH	25	•r	i n	×1	0	%	0	0	0	0
12	07.06.2011	14:21:01	7.020 Daten	logger	' Speichern			×	0	%	0	0	0	0
13	07.06.2011	14:20:01	7.020						0	%	0	0	0	0
14	07.06.2011	14:19:01	7.020						0	%	0	0	0	0
15	07.06.2011	14:18:01	7.020 Bitt	e Gebe	n Sie ein Trennzei	chen ei	n:		0	%	0	0	0	0
16	07.06.2011	14:17:01	7.019						0	%	0	0	0	0
17	07.06.2011	14:16:01	7.020 1	Fabulati	or	•			0	%	0	0	0	0
18	07.06.2011	14:15:01	7.020 E	enutze	rdefiniert	_	,		0	%	0	0	0	0
19	07.06.2011	14:14:01	7.020	emikola					0	%	0	0	0	0
20	07.06.2011	14:13:01	7.020	abulato	or				0	%	0	0	0	0
21	07.06.2011	14:12:01	7.019					_	0	%	0	0	0	0
22	07.06.2011	14:11:01	7.019		Castabana		1 California	1	0	%	0	0	0	0
23	07.06.2011	14:10:01	7.019		Speichern	uncer	Schliessen		0	%	0	0	0	0
24	07.06.2011	14:09:01	7.021						0	%	0	0	0	0
25	07.06.2011	14:08:01	7.02600	рп	2.0				0	%	0	0	0	0
26	07.06.2011	14.07.01	7.020673	ъH	25	PC	0	96	0	96	Î O	0	0	0

15 Eliminating errors and faults

Problem	Possible cause	Action
No measurement display or current output	There is no supply voltage	Check the power supply
Measurement display 0000 or current output 4 mA	Sensor not immersed in medium; level in container too low	Top up the container
	Flow-through fitting is blocked	Clean the flow-through fitting
	Sensor faulty	Replace the sensor
Incorrect or	Sensor faulty	Replace the sensor
fluctuating measurement display	Sensor positioning incorrect	Choose another installation location
	Air bubbles	Optimize assembly
HAUPTWERTEINGANG: OVERRANGE	Measurement overrange	
HAUPTWERTEINGANG: UNDERRANGE	Measurement underrange	Choose a suitable measuring
ALARH MESSUNG 8888 25.7°C PH	Main input: Measurement range "out of range"	range
HAUPTEINGANG: KOMPENSATBEREICH	Compensation range has been left	
TEMPERATURE INGANG: OVERRANGE	Measurement overrange	
TEMPERATURE INGANG: UNDERRANGE	Measurement underrange	Choose a suitable measuring range
ALARH MESSUNG 8888 8888 °C PH	Temperature input: Measurement range "out of range"	
OPTIONSEINGANG 1: KOMPENSATBEREICH	Compensation range has been left	Choose a suitable measuring
OPTIONSEINGANG 1: OUT OF RANGE	Temperature input: Measurement range "out of range"	range
GLASELEKIMPEDANZ ZU HOCH	Coating	Clean (glass) electrode. Replace (glass) electrode.

15 Eliminating errors and faults

GLASELEKIMPEDANZ ZU NIEDRIG	Membrane glass damaged	Replace (glass) electrode.
BEZUGSELIMPEDANZ ZU HOCH	Coating	Clean reference electrode. Replace reference electrode.
ABHÄNGIGE PARAMETER WURDEN ANGEPASST	Configuration change	ОК
DATENLOGGER WIRD GELÖSCHT	Configuration change	ОК
EBENE GESPERRT	Inhibit via binary contact	Check configuration and unlock if necessary
PARAMETER GESPERRT	Do not release	If appropriate release in the release level
PASSWORT FALSCH		Test
TASTATUR VERRIEGELT	Inhibit via binary contact	Check configuration and unlock if necessary
KONFIGURATION WURDE WIEDER HERGESTELLT	Cancel in basic setting	ОК
PROFIBUS FEHLER		Check hardware
UNZULÄSSIGE HARDWARE-BESTÜCKUNG		Check fitting, adjust if necessary
FEHLER ECHTZEITUHR: UHRZEIT NEU STELLEN	Instrument had no power supply for a very long time	Establish power supply Set the datalogger time

16 Technical data

Inputs (main board)

Main input	Measuring range/control	Accuracy	Effect of temperature
	range		
pH value	-2 - 16 pH	\leq 0.3% of range	0.2%/10°C
Redox potential	-1500 - 1500 mV	\leq 0.3% of range	0.2%/10°C
NH ₃ (ammonia)	0 - 9999 ppm	\leq 0.3% of range	0.2%/10°C
Secondary input			
Temperature Pt100/1000	-50 to 250°C ¹	\leq 0.25% of range	0.2%/10°C
Temperature NTC/PTC	0.1 - 30 k Ω Entry via table with 20 value pairs	≤ 1.5% of range	0.2%/10°C
Standard signal	0(4) - 20 mA or 0 - 10 V	0.25% of range	0.2%/10°C
Resistance transmitter	Minimum: 100 Ω Maximum: 3 kΩ	+/- 5 Ω	0.1%/10°C

¹ Selectable in °F.

Resistance thermometer inputs (optional board)

Designation	Connection type	Measuring range	Measuring accuracy Effect of		Effect of ambient	
			3-wire/4-wire	2-wire	temperature	
Pt100 DIN EN 60751 (factory-set)	2-wire/3-wire 4-wire	-200 - +850°C	≤ 0.05%	≤ 0.4%	50 ppm/°C	
Pt1000 DIN EN 60751 (factory-set)	2-wire/3-wire 4-wire	-200 - +850°C	≤ 0.1%	≤ 0.2%	50 ppm/°C	
Sensor lead resistance	Maximum 30 Ω per line with three- and four-wire circuit					
Measurement current	approx. 250 µA	approx. 250 μA				
Lead compensation	Not required for three compensated in the	ot required for three- and four-wire circuit. With a 2-wire circuit, lead resistance can be ompensated in the software by correcting the process value.				

Standard signals inputs (optional board)

Designation	Measuring range	Measuring accuracy	Ambient temperature effect
Voltage	0(2) - 10 V	≤ 0.05%	100 ppm/°C
Electrical current	0 - 1 V Input resistance $R_E > 100 \text{ k}\Omega$	≤ 0.05%	100 ppm/°C
Resistance transmitter	Minimum: 100 Ω Maximum: 4 k Ω	+/-4Ω	100 ppm/K

Temperature compensation

Measurement variable	Compensation	Range ¹
pH value	Yes	-10 - 150°C
Redox potential	No	Not applicable
NH ₃ (ammonia)	Yes	-20 - +50°C

¹ Note the sensor operating temperature range!

Measuring circuit monitoring

Inputs		Overrange/ underrange	Short circuit	Broken lead
pH value		Yes	Yes ¹	Yes ¹
Redox potential		Yes	No	No
NH ₃ (ammonia)		Yes	No	No
Temperature		Yes	Yes	yes
Voltage	2 - 10 V	Yes	Yes	Yes
	2 - 10 V	Yes	No	No
Current	4 - 20 mA	Yes	Yes	Yes
	0 - 20 mA	Yes	No	No
Resistance tra	ansmitter	No	No	Yes

¹ The sensor can be monitored for short circuit and broken lead during the pH measurement by activating the impedance measurement.

Impedance measurement

The impedance measurement can optionally be activated.

Because it depends on some boundary parameters, note the following points:

- Only glass-based sensors are permitted.
- The sensors must be connected directly to the transmitter.
- Only one impedance converter may be used in the measuring circuit!
- The maximum permissible line length between sensor and transmitter is 10 m.

Liquid resistances are included directly in the measurement results.
We therefore recommend activating the measurement in liquids beginning with a minimum conductivity of about 100 µS/cm.

Binary input

Activation	Floating contact is open: Floating contact is closed:	function is not active function is active
Function	Key lock, manual mode, HOLD, HOLD inv lock, reset partial quantity, reset total qua	rerse, alarm suppression, freeze measured value, level ntity, parameter set changeover

Controller

Controller type	Limit comparators, limit controllers, pulse length controllers, pulse frequency controllers, modulating controllers, continuous controllers
Controller structure	P / PI / PD / PID

Outputs

Relay (changeover) - Contact rating - Contact service life	Basic board	5 A at 240 VAC resistive load 350,000 operations at nominal load/750,000 operations at 1 A
Supply voltage for 2-wire transmitter	Basic board	Electrically isolated, non-controlled DC 17 V at 20 mA, open-circuit voltage approx. DC 25 V
Power supply for ISFET	Optional board	DC +/- 5 V; 5 mA
Power supply for inductive proximity switch	Optional board	DC 12 V; 10 mA
Relay (changeover) - Contact rating - Contact service life	Optional board	8 A at AC 240 V resistive load 100,000 operations at nominal load/350,000 operations at 3A
Relay SPST (normally open) - Contact rating - Contact service life	Optional board	3A at 240VAC resistive load 350,000 operations at nominal load/900,000 operations at 1A
Semiconductor relay - Contact rating - Protective circuit	Optional board	1 A at 240 V Varistor
Semiconductor switch (photo MOS)	Optional board	$\begin{array}{l} U \leq 50 \text{ V AC/DC} \\ I \leq 200 \text{ mA} \end{array}$
Voltage - Output signals - Load resistance - Accuracy	Optional board	0 - 10 V / 2 - 10 V $R_{load} \ge 500 \Omega$ $\le 0.5\%$
Electrical current - Output signals - Load resistance - Accuracy	Optional board	0 - 20 mA / 4 - 20 mA R _{load} \leq 500 Ω \leq 0.5%

Display

Туре	LC graphic display, blue with background lighting, 122 x 32 pixels
------	--

16 Technical data

Electrical data

Supply voltage	AC 110 - 240 V -15/+10%; 48 - 63 Hz or			
(switch-mode PSU)	AC/DC 20-30 V; 48 - 63 Hz			
Electrical safety	to DIN EN 61010, Part 1			
	overvoltage category II, pollution degree 2			
Power consumption	Max. 13 VA			
Data backup	EEPROM			
Electrical connection	On the back via screw terminals,			
	conductor cross-section up to max. 2.5 mm ²			
Electromagnetic Compatibility	DIN EN 61326-1			
(EMC)				
- Interference emission	Class A			
- Immunity to interference	to industrial requirements			

Enclosure

Enclosure type	Plastic enclosure for panel mounting to DIN IEC 61554 or aluminium field housing, orange			
Depth behind panel	90 mm (panel mounting), 137 mm (field housing)			
Ambient temperature Storage temperature	-5+55°C (panel mounting), -5+50 °C (field housing) -30+70°C			
Climatic rating	Rel. humidity ≤90% annual mean, no condensation			
Operating position	Horizontal			
Enclosure protection	to DIN EN 60529, front IP65, rear IP20			
Weight (fully fitted)	about 380 g (panel mounting), about 1480 g (field housing)			

Interface

Modbus			
Interface type	RS422/RS485		
Protocol	Modbus, Modbus Integer		
Baud rate	9600. 19200, 38400		
Device address	0 - 255		
Max. number of nodes	32		
PROFIBUS-DP			
Device address	0 - 255		

Caution:

The instrument **must** be de-energized on the input and output sides! Optional boards must only be retrofitted by qualified specialists.

ESD:

Optional boards can be damaged be electrostatic discharge. You must therefore prevent electrostatic charges from accumulating during installation and removal. Optional boards should be retrofitted at a grounded workstation.

17.1 Identifying an optional board

The packaging of the optional board is identified by a sales number.

Optional board	Code	Sales No.	Board view
Analog input (universal)	1	APM-100001	
Relay (1 x changeover)	2	APM-100002	
Relay (2 x NO) This board must only be inserted in optional slot 1 or 3!	3	APM-100003	
Analog output	4	APM-100004	
Two MosFET semiconductor switch	5	APM-100005	

17 Retrofitting optional boards

Optional board	Code	Sales No.	Board view
Semiconductor relay 1 A	6	APM-100006	
Supply voltage output +/- 5 V DC (e.g. for ISFET)	7	APM-100007	
Supply voltage output 12 V DC (e.g. for inductive proximity switch)	8	APM-100008	
Interface - RS422/485	10	APM-10000S	
Datalogger with interface RS422/485	11	APM-10000D	
Profibus-DP interface	12	APM-10000P	

17.2 Removing a plug-in module

(1) Squeeze the front panel together by the left and right sides and remove the plug-in module.

17.3 Inserting a plug-in module

Caution:

No "3" relays (2 x SPST/normally open) may be inserted in slot 2!

- (1) Slot 1 for optional board
- (2) Slot 2 for optional board
- (3) Slot 3 for optional board
- (1) Push the optional board into the slot until it locks in place.
- (2) Push the device plug-in into the enclosure until it locks in place.

17.4 Retrofitting optional boards (field housing)

 Loosen the clamp screws (4x), push back the front plate and press together the latching surface of electronic module from left and right. Pull out the electronic insert from the electronic housing.

5. The optional boards can now be installed in the electronic. The assembly takes place in reverse order. While mounting the front cover on the housing profile, care should be taken to correctly position the gasket in the groove.

18.1 Glossary

Zero point (1-point) calibration

- With one-point offset calibration, the zero point of the pH combination electrode is calculated, See section 8.3 "Zero point (1-point) calibration", page 48.

Recommended only for special applications, such as ultra-pure water.

2-point calibration

- With two-point calibration, the zero point and slope of the combination electrode are calibrated, See section 8.4 "2-point calibration", page 49. This is the recommended calibration for most sensors.

3-point calibration

In three-point calibration, the zero point and the slope are calibrated in the acidic range and the slope is calibrated in the alkaline range, See section 8.5 "3-point calibration", page 51.

This calibration is recommended with heightened requirements for accuracy.

Limit value (alarm) function of the binary outputs

18 Appendix

Display of measured values STANDARD

The measurement value, measurement variable and temperature of the measuring material are shown in standard display.

- (1) Operating mode
- (2) Display bottom (temperature input)
- (3) Display top (analog input measurement value)

Display of measured values TENDENCY

The operator can quickly see the direction in which the measurement is changing.

The measurement tendency (trend) is calculated over the last 10 measurement values.

So with a sampling interval of 500 ms, the last 5 seconds are considered.

Display of measured values BARGRAPH

- Values of the main inputs, input options or math channels (signal source) can be represented as a variable bar (a bar graph).

Scaling the bar

- * Activate "BARGRAPH" as the display of measured values.
- ★ Select "SCALE START" with **▼**.
- ★ Confirm the selection with PGM.
- ***** Use \blacksquare and \blacksquare to enter the lower limit of the range to be displayed.
- ★ Confirm the selection with PGM.
- ★ Select "SCALE END" with **▼**.
- ***** Use \mathbf{V} or $\mathbf{\Lambda}$ to enter the upper limit of the range to be displayed.
- ★ Confirm the selection with PGM.

To return to measuring mode:

Press the $\ensuremath{\mbox{\tiny Ext}}$ key repeatedly or wait for a "timeout".

Measurement display type TREND CHART

Values of the main inputs, input options or math channels (signal source) can be represented as a graph.

The current values appear to the right on the screen.

Scaling the display

- * Activate "TREND CHART" as the display of measured values.
- ★ Select "SCALE START" with **▼**.
- * Confirm the selection with PGM.
- ***** Use \blacksquare and \blacksquare to enter the lower limit of the range to be displayed.

- * Confirm the selection with \square .
- ★ Select "SCALE END" with **▼**.
- ***** Use \blacksquare or \blacksquare to enter the upper limit of the range to be displayed.
- ★ Confirm the selection with PGM.

To return to measuring mode: Press the EXT key repeatedly or wait for a "timeout".

Display of measured values LARGE DISPLAY

Values of the main inputs, input options or math channels (signal source) can be displayed in large format.

Display of measured values 3 MEAS. VALUES

Three values of the main inputs, input options or math channels (signal source) can be displayed simultaneously.

The position of the value to be displayed can be set to "Top", "Center" or "Bottom".

11:43:59	
HAUPTWERT	6.02 pH
0PT.IN 2	5.00 pH
TEMP.EIN.	25.0 °C

Pulse length controller (output active with x > w and P control structure)

If actual value x exceeds setpoint W, the P controller will control in proportion to the control deviation. When the proportional range is exceeded, the controller operates with an output level of 100% (100% clock ratio).

Pulse frequency controller (output active with x > w and P control structure)

If actual value x exceeds setpoint W, the P controller will control in proportion to the control deviation. When the proportional range is exceeded, the controller operates with an output level of 100% (maximum switching frequency).

Calibration timer

The calibration timer indicates (on request) a required routine calibration. The calibration timer is activated by entering the number of days that must expire before there is a scheduled re-calibration (specified by the system or the operator).

Customer specs. table

In this mode, the input value can be displayed based on a table (max. 20 value pairs). This function is used to display and linearize non-linear input variables. Values can only be entered in the table using the optional setup program.

Cust. specs. characteristic

In this mode, the instrument can model a monotonically increasing input variable to any output value.

The optional setup program is used to enter the requisite value table.

unde	enspezifische Keni	nlinie	2
	Eingang	Ausgang	Hinweis
4 5 7 8 9 10 11 12 13 14 15 15	30 40 50 60 70 80 90 100	30 50 80 85 90 93 98 100	Bei der kundenspezifischen Tabelle können Sie maximal 20 Stützstellen in die Tabelle eintragen. Wertebereich Eingangsgröße: 0.00 100.00 % Wertebereich Ausgangsgröße: -999.900 999.900 gew.% Bitte beachten Sie, daß die Eingangsgrößen in ihrem Wert ansteigen müssen.
17			
]==		OK Abbrechen

Min./max. value memory
This storage records the minimum and maximum input quantities that have occurred. This information can be used, for example, to assess whether the design of the connected sensor is suitable for the values that actually occur.

The max./min. value memory can be reset, See section 6.7.6 "Delete min/max values", page 35:

Temperature compensation

The pH value of a measurement solution depends on the temperature. Since the pH value is not always measured at the reference temperature, the instrument is able to perform a temperature compensation.

The sensor signal for the ammonia measurement is temperature-dependent. The instrument can perform temperature compensation.

The redox potential of a measurement solution is **not** temperature-dependent! Temperature compensation is not required.

Special controller functions: Separate controllers

This function is normally deactivated (factory setting or select "No").

In the deactivated state, the software prevents the two controller outputs from being able to work "against each other". So, for example, it is not possible to dose acid and lye at the same time.

If the controllers are separate ("Yes" selection), each controller can be freely configured.

Switch-off of the I-component

This function is normally deactivated (factory setting or select "No").

In the deactivated state, the controller works in accordance with general controller theory.

When I-component switch-off is activated ("Yes" selection), the part of the output level that can be traced back to the I-component is set to zero when the setpoint is reached.

This can be useful with mutual neutralization (acid and lye dosing both possible) in one treatment tank.

Datalogger

Recording duration = about 10 hours with a storage interval of 1 second

Recording duration = about 150 days with a storage interval of 300 seconds

Asymmetrical connection of pH electrodes

Typically pH electrodes are connected asymmetrically to the transmitter. The connection corresponds exactly to the structure of a pH electrode in terms of impedance.

For the asymmetrical connection, the glass electrode is connected to the electronics with a high impedance and the reference electrode is connected with a low impedance. Most transmitters are designed for this connection type.

For both asymmetrical and symmetrical connections, the input impedance of

the transmitter is about 1000 times greater than the impedance of the connected glass electrode. The impedance of a glass electrode may be as much as 1000 MOhm.

Symmetrical connection of pH electrodes

The symmetrically high-impedance input is an alternative way to connect pH electrodes to the transmitter. In this case both the glass and the reference electrode are connected to the transmitter with high impedance. With this type of connection, it is essential to connect the liquid junction potential to the transmitter as well.

Even difficult electrical environmental conditions can be compensated for with the symmetrical connection.

For example, if a poorly insulated electric stirrer motor is directing a residual current into the sample, this will result in a shift in the potential relative to systems ground.

With the normal asymmetrical connection, a residual current can then flow through the coupling capacitances (which are present in all instruments) to systems ground, thereby causing a measurement error.

With a symmetrical connection, both inputs are directed via operation amplifiers to the instrument electronics. These operation amplifiers block the residual current (to a certain degree) and a measuring error is prevented.

Impedance monitoring

Impedance monitoring of glass pH combination electrodes places high demands on the transmitter electronics. The measurement required for this purpose takes place at the same time the main measured value is recorded. To minimize the electrode load, a response time of up to one minute is possible.

With an asymmetrical connection of glass and reference electrode, the overall impedance can be monitored.

Monitoring of the reference electrode is not recommended, since the measured value is difficult to interpret.

The impedance measurement depends on the cable material, the line length and the components used. Kobold special lines for pH measurements are limited in length to 10 m.

If ISFET sensors or impedance converters are used, impedance monitoring is not possible.

Wash timer

The wash timer can be used to implement automated sensor cleaning. To do this, the function is assigned to a switching output.

The cycle time (cleaning interval) can be adjusted in the range from 0.0 to 240.0 hours.

A cycle time of "0.0" means the wash timer is deactivated.

The wash time (cleaning duration) is adjustable from 1 to 1800 seconds.

During the wash time the controller goes into the HOLD state, which is maintained for 10 seconds after completion of the wash time. A sensor calibration within the cycle time restarts the wash timer.

18.2 Parameters of the User level

When there are numerous instrument parameters to configure, it is advisable to make a note in the table below of all the parameters to be changed and to work through these parameters in the given order.

The following list shows the maximum number of parameters that can be modified.

Some of these parameters will not be visible (and therefore not editable) for your particular instrument, depending on the configuration.

Parameter	Selection / value range	New setting
	Factory setting	
Input pH/redox		
Zero point	5.00 - 7.00 - 9.00 or	
	-9999.99 - 0.00 - +9999.99 mV	
Slope - acidic	xx.xx - xx.xx - xx.xx %	
Slope - alkaline	xx.xx - xx.xx - xx.xx %	
Temperature	Temperature input	
compensation source	Option input 1	
	Option input 2	
	Option input 3	
	Manual temperature input	
Monitoring of the	Off	
reference electrode	On	
Glass electrode	Off	
monitoring	On	
Filter time constant	0.0 - 2.0 - 25.0 seconds	
Calibration interval	0 - 99 days (0 = timer not active)	
Differential measurement	Off	
	Main input - (minus) Option input 1	
	Main input - (minus) Option input 2	
	Main input - (minus) Option input 3	
	Option input 1 - (minus) Main input	
	Option input 2 - (minus) Main input	
	Option input 3 - (minus) Main input	
Supply frequency	50 Hz	
	60 Hz	
Temperature input		
Temperature sensor	No sensor	
	Pt 100	
	Pt 1000	
	Cust. specs.	
	0 - 20 mA	
	4 - 20 mA	
	0 - 10 V	
	2 - 10 V	
	Resistance transmitter	

Parameter	Selection / value range	New setting
	Factory setting	
Unit	°C/°F	
	%	
	Without unit	
	Cust. specs.	
Scaling start	-100.0 - 0.0 - 499.9°C	
Scaling end	-99.9 - 100.0 - 500.0°C	
Filter time constant	0.0 - 2.0 - 25.0 seconds	
Manual temperature	-99.9 - 25.0 - +99.9°C	
Offset	-99.9 - 0.0 - +99.9°C	
Input options		
Analog inputs 1 to 3		
Operating mode	Off	
operaning measure	Linear	
	Temperature	
	nH measurement	
	Conductivity	
	Concentration	
	Cust specs	
	Stroke feedback	
	Chlorine pH-compensated	
Signal type		
olgilal type	4 - 20 mA	
	-10 V	
	2 - 10 V	
	0 - 1 V	
	D+100	
	Pt100	
Connection type	2 wire	
Connection type	2-wire	
	4-wiro	
Diaplay format		
Display lonnat		
Linit		
Unit	μ5/cm	
	KS2*CITI	
	Nono	
	None Cust space	
	Cust. specs.	
	70	
	ppm ma/l	
O salla sala d		
Scaling start		
Scaling end	-9998 + 9999	

Parameter	Selection / value range	New setting
	Factory setting	3
Temperature	Temperature input	
compensation source	Option input 1	
	Option input 2	
	Option input 3	
	Manual temperature	
pH compensation source	Main input	
	Option input 1	
	Option input 2	
	Option input 3	
Temperature	None	
compensation	Linear	
	TC graph	
	Natural waters	
	ASTM D1125 neutral	
	ASTM D1125 acidic	
	ASTM D1125 alkaline	
	NaOH 0 - 12%	
	NaOH 25 - 50%	
	HNO ₃ 0 - 25%	
	HNO ₃ 36 - 82%	
	H ₂ SO ₄ 0 - 28%	
	H ₂ SO ₄ 36 - 85%	
	H ₂ SO ₄ 92 - 99%	
	HCI 0 - 18%	
	HCI 22 - 44%	
Reference temperature	15.0 - 25.0 - 30.0°C	
Filter time constant	0.0 - 2.0 - 25.0 seconds	
Relative cell constant	20.0 - 100.0 - 500.0 1/cm	
Temperature coefficient	0.00 - 2.20 - 8.00 1/cm	
Zero point	-9999 - 0 - +9999	
Slope	-999.9 - 100.0 - +999.9%	
Binary inputs		
Binary input 1 or 2		
Function	No function	
	Manual mode	
	Hold mode	
	Hold mode inverse	
	Alarm stop	
	Freeze measured value	
	Key lock	
	Lock levels	
	Flow rate measurement	
	Reset day counter	
	Reset total counter	
	Parameter set switchover	

Parameter	Selection / value range	New setting
	Factory setting	
Controllers		
Controller 1 or 2		
Parameter set 1 or 2		
Min. setpoint	-2.00 - 0.00 - 16.00 pH	
Max. setpoint	-2.00 - 16.00 - 16.00 pH	
Setpoint	-2.00 - 0.00 - 16.00 pH	
Setpoint 2	-2.00 - 0.00 - 16.00 pH	
Proportional range	0.00 - 99.99 pH	
Reset time	0.00 - 9999 s	
Derivative time	0.00 - 9999 s	
Period time	2.00 - 60.0 - 999.9 s	
Hysteresis	0.00 - 1.00 - 9.00 pH	
On-delay	0.00 - 999.5 s	
Delayed release	0.00 - 999.5 pH	
Output limit	0 - 100%	
Min. turn-on time	0.20 - 0.50 - 99.50 s	
Actuator time	10 - 60 - 3000 s	
Max. pulse frequency	1 - 60 - 80 1/s	
Alarm tolerance	0.00 - 1.00 - 9.00 pH	
Alarm delay	0.00 - 9999 s	
Configuration		
Controller type	Off	
	Limit value	
	Pulse lengths	
	Pulse frequency	
	Continuous	
	Modulating	
Controller actual value	Main value	
	Not comp. Main value	
	Temperature	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
	Differential signal	

Parameter	Selection / value range	New setting
	Factory setting	-
Stroke retransmission	No signal	
	Main value	
	Not comp. Main value	
	Temperature	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
Additive disturbance	No signal	
	Main value	
	Not comp. Main value	
	Temperature	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
Multiplicative disturbance	No signal	
	Main value	
	Not comp. Main value	
	Temperature	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
Min/max contact	Min contact	
	Max contact	
Make/break contact	Make contact	
	Break contact	
Hold mode	0%	
	100%	
	Frozen	
	Hold output	
Hold reg. ratio	0 - 100%	
Error	0%	
	100%	
	Frozen	
	Hold output	

Parameter	Selection / value range	New setting
	Factory setting	
Alarm control	Off	
	On	
Controller special func	tions	
I-switch-off	Inactive (the controller is working normally)	
	Active (special behavior)	
Separate controllers	No	
	Yes	
Manual mode	Locked	
	Coding	
	Switching	
Limit value control		
Limit values 1 to 4		
Signal source	No signal	
	Main value	
	Not comp. Main value	
	Temperature	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
	Differential signal	
	Flow rate	
	Partial quantity	
	Total quantity	
	Output controller 1	
	Output controller 2	
	Setpoint 1 controller 1	
	Setpoint 2 controller 1	
	Setpoint 1 controller 2	
Ou italain a fan atian	Setpoint 2 controller 2	
Switching function	Alarm function (AF1)	
	Alarm function (AF2)	
	Alarm function (AF7)	
	Alarm function (AF8)	
Switching point	2.00 - 0.00 - 16.00 pH	
Hysteresis	0.00 - 9.00 рН	

Parameter	Selection / value range	New setting
	Factory setting	i tott oottillig
Binary outputs		
Binary outputs 1 to 8		
Signal source	No signal	
	Limit value control 1	
	Limit value control 2	
	Limit value control 3	
	Limit value control 4	
	Controller 1 output 1	
	Controller 1 output 2	
	Controller 2 output 1	
	Controller 2 output 2	
	Controller alarm 1	
	Controller alarm 2	
	Controller alarm	
	Sensor warnings	
	Sensor error	
	Warnings and errors	
	Calibration timer	
	Wash timer	
	Logic 1	
	Logic 2	
	Autorange	
At calibration	Standard operation	
	Inactive	
	Active	
	Frozen	
Error	Inactive	
	Active	
	Frozen	
Hold mode		
	Active	
	Frozen Standard aparation	
Switch on dolov		
Switch-on delay	0.0 - 3600 s	
Switch-off delay	0.0 - 3600 s	
Pulse time'	0.0 - 3600 s	
Manual mode	No simulation	
	Inactive	
	Active	

¹ Delayed release is automatically deactivated when wiper times are greater than 0 seconds.

Parameter	Selection / value range	New setting
	Factory setting	
Analog outputs		
Analog outputs 1 to 3		
Signal source	No signal	
	Main value	
	Not comp. Main value	
	Temperature	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
	Differential signal	
	Flow rate	
	Partial guantity	
	Total quantity	
	Output controller 1	
	Output controller 2	
	Setpoint 1 controller 1	
	Setpoint 2 controller 1	
	Setpoint 1 controller 2	
	Setpoint 2 controller 2	
Signal type	0 - 20 mA	
5 71	4 - 20 mA	
	20 - 0 mA	
	20 - 4 mA	
	0 - 10 V	
	10 - 0 V	
Scaling start	2.00 - 0.00 - 15.00 pH	
Scaling end	0.00 - 16.00 pH	
At calibration	Moving	
	Frozen	
	Safe value	
In case of error	0/4 mA / 0 V	
(output signal, of the	20 mA / 10 V	
controller in case of error)	Frozen	
	Safety value	
Hold mode	Frozen	
(output signal, of the	Safety value	
controller in Hold mode)	Standard mode	
· · · · · · · · · · · · · · · · · · ·	0/4 mA / 0 V	
	20 mA / 10 V	
Safety value	0.0 - 20.0 mA	
Simulation	Off	
	On	
Simulation value	Off	
	0.0 - 20.0 mA	

Parameter	Selection / value range	New setting
Interface	I actory setting	
Modbus address	1 - 254	
Baud rate	9600	
	10200	
	19200	
	38400	
Parity	None	
	Even	
	Odd	
Stop bits	1	
	2	
Profibus address	0 - 99	
EEPROM marking	Off	
	On	
Wash timer		
Cycle time	0.0 - 240.0 hours	
-	(0.0 = Wash contact is not active	
Wash time	1 - 60 - 1800 seconds	
Datalogger		
Storage interval	1 - 60 - 300 seconds	
Channels 1 to 4	No signal	
	Main value (standard for channel 1)	
	Not comp. Main value	
	Temperature (standard for channel 2)	
	Option input 1	
	Option input 1 not compensated	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
	Differential signal	
	Flow rate	
	Partial quantity	
	Iotal quantity	
	Output controller 1 (standard for channel 3)	
	Setpoint 1 controller 1	
	Setpoint 2 controller 1	
	Setpoint 1 controller 2	
	Setpoint 2 controller 2	
Date year	20xx	
Date month	1 - 12	
Date day	1 - 31	
Time hour	0 - 24	
Time minute	0 - 59	
Time second	0 - 59	

Parameter	Selection / value range	New setting
	Factory setting	
Display		
Lighting	On	
	With operation	
Display of measured value	Standard	
	Tendency	
	Bargraph	
	Trend chart	
	Large display	
	3 measured values	
	Time	
Display Top / Center /	No signal	
Bottom	Main value (standard for "Top")	
	Not comp. Main value	
	Temperature(standard for "Center" and	
	"Bottom")	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
	Differential signal	
	Flow rate	
	Partial quantity	
	Total quantity	
	Output controller 1	
	Output controller 2	
	Setpoint 1 controller 1	
	Setpoint 2 controller 1	
	Setpoint 1 controller 2	
	Setpoint 2 controller 2	
Operating timeout	0 - 1 - 10 minutes	
	(0 = operating timeout is turned off)	
Scaling start	-2.00 - 0.00 - 15.00 pH	
Scaling end	0.00 - 16.00 pH	

Parameter	Selection / value range	New setting
	Factory setting	
Signal source	Main value	
	Not comp. Main value	
	Temperature	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
	Differential signal	
	Flow rate	
	Partial quantity	
	Total quantity	
Temperature unit	C	
	°F	
LCD inverse	Off	
	On	
Contrast	0 - 10 - 20	

19. Disposal

Note!

- Avoid environmental damage caused by media-contaminated parts
- Dispose of the device and packaging in an environmentally friendly manner
- Comply with applicable national and international disposal regulations and environmental regulations.

Batteries

Batteries containing pollutants are marked with a sign consisting of a crossed-out garbage can and the chemical symbol (Cd, Hg, Li or Pb) of the heavy metal that is decisive for the classification as containing pollutants:

- 1. "Cd" stands for cadmium
- 2. Hg" stands for mercury
- 3. "Pb" stands for lead
- 4. Li" stands for lithium

Electrical and electronic equipment

20. EU Declaration of Conformance

We, KOBOLD Messring GmbH, Nordring 22-24, 65719 Hofheim, Germany, declare under our sole responsibility that the product:

Transmitter/Controller for pH-Value, Redox, Standard signals and Temperature Model: APM-1

to which this declaration relates is in conformity with the following EU directives stated below:

2014/30/EU	EMC Directive
2014/35/EU	Low Voltage Directive
2011/65/EU	RoHS
2015/863/EU	Delegated Directive (RoHS III)

Also the following standards are fulfilled:

EN 61326-1:2013 Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements **EN 61010-1:2010+A1:2019/AC:2019** Safety requirements for electrical equipment for measurement, control and laboratory use - Part 1: General requirements

Hofheim, 14 March 2024

H. Volz General Manager

Joseph Burke Compliance Manager

21. UK Declaration of Conformance

We, KOBOLD Messring GmbH, Nordring 22-24, 65719 Hofheim, Germany, declare under our sole responsibility that the product:

Transmitter/Controller for pH-Value, Redox, Standard signals and Temperature Model: APM-1

to which this declaration relates is in conformity with the following UK directives stated below:

- S.I. 2016/1091 Electromagnetic Compatibility Regulations 2016
- S.I. 2016/1101 Electrical Equipment (Safety) Regulations 2016

S.I. 2012/3032 The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012

Also, the following standards are fulfilled:

Hofheim, 14 March 2024

BS EN 61326-1:2013 Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements **BS EN 61010-1:2010+A1:2019/AC:2019** Safety requirements for electrical equipment for measurement, control and laboratory use - Part 1: General requirements

H. Volz General Manager

Joseph Burke Compliance Manager

Manufactured and sold by:

Kobold Messring GmbH Nordring 22-24 D-65719 Hofheim Tel.: +49(0)6192-299-0 Fax: +49(0)6192-23398 E-Mail: info.de@kobold.com Internet: www.kobold.com

Version: K07/0324