

Bedienungsanleitung für

Ultraschall Durchflussmesser/ -wächter/ -zähler/ -dosierer

Typ: DUK

KofiCom Interface set

1. Inhaltsverzeichnis

1.	Inhali	tsverzeichnis	2
2.		eis	
3.	Kontr	olle der Geräte	4
4.	Besti	mmungsgemäße Verwendung	5
5.		tsweise	
	5.1	Allgemein	5
6.	Mech	nanischer Anschluss	6
	6.1	Betriebsbedingungen überprüfen	6
	6.2		
7.	Elekt	rischer Anschluss	8
	7.1	Allgemeines	8
	7.2	DUKS300	
	7.3	DUKS30D	8
	7.4	DUKF3x0; DUKL3x3	9
	7.5	DUKL443	
	7.6	DUKC30.	9
	7.7	DUKC34.	
	7.8	DUKC3T0	
	7.9	DUKEx4R, DUKGx4R	.10
8.	Inbet	riebnahme	
	8.1	Schaltpunkteinstellung DUKS300, DUKS30D	
	8.2	Zählelektronik DUKEx4R	
	8.3	Dosierelektronik DUKGx4R	
	8.4	Verwendung von Wasser abweichenden Medien (nur Option -C3T0)12
9.	Einst	ellung - Kompaktelektronik DUKC3T0	
10.		testatus - Kompaktelektronik DUKC3T0	
		ellung - Kompaktelektronik DUKC3	
		Tastenfunktion	
	11.2	Einstellungen	.14
		Werteinstellung	
		Einstellmodus	
	11.5	Hauptmenüpunkte	.18
12.		ung	
		nische Daten	
		elldaten	
		essungen	
		orgung	
17.	IO-Li	nk - Kompaktelektronik DUKC3T0	.24
		IO-Link Funktion	
18.		ng - Kompaktelektronik DUKC3T0	
		IO-Link Prozessdatenstruktur	
		IO-Link Diagnoseinformation	
		IO-Link System Kommando Tabelle	
		IO-Link ISDU Parameter Tabelle	
19.		tellererklärung	
			.40

Seite 2 DUK K17/0124

21. UK Declaration of Conformity......41

Herstellung und Vertrieb durch:

Kobold Messring GmbH Nordring 22-24 D-65719 Hofheim Tel.: +49 (0)6192-2990

Fax: +49(0)6192-23398 E-Mail: info.de@kobold.com Internet: www.kobold.com

2. Hinweis

Diese Bedienungsanleitung vor dem Auspacken und vor der Inbetriebnahme lesen und genau beachten.

Die Bedienungsanleitungen auf unserer Website www.kobold.com entsprechen immer dem aktuellen Fertigungsstand unserer Produkte. Die online verfügbaren Bedienungsanleitungen könnten bedingt durch technische Änderungen nicht immer dem technischen Stand des von Ihnen erworbenen Produkts entsprechen. Sollten Sie eine dem technischen Stand Ihres Produktes entsprechende Bedienungsanleitung benötigen, können Sie diese mit Angabe des zugehörigen Belegdatums und der Seriennummer bei uns kostenlos per E-Mail (info.de@kobold.com) im PDF-Format anfordern. Wunschgemäß kann Ihnen die Bedienungsanleitung auch per Post in Papierform gegen Berechnung der Portogebühren zugesandt werden.

Bedienungsanleitung, Datenblatt, Zulassungen und weitere Informationen über den QR-Code auf dem Gerät oder über <u>www.kobold.com</u>

Die Geräte dürfen nur von Personen benutzt, gewartet und instandgesetzt werden, die mit der Bedienungsanleitung und den geltenden Vorschriften über Arbeitssicherheit und Unfallverhütung vertraut sind.

Beim Einsatz in Maschinen darf das Messgerät erst dann in Betrieb genommen werden, wenn die Maschine der EG-Maschinenrichtlinie entspricht.

nach Druckgeräterichtlinie 2014/68/EU

Keine CE-Kennzeichnung, siehe Artikel 4, Absatz 3, "Gute Ingenieurpraxis", Richtlinie 2014/68/EU

3. Kontrolle der Geräte

Die Geräte werden vor dem Versand kontrolliert und in einwandfreiem Zustand verschickt. Sollte ein Schaden am Gerät sichtbar sein, so empfehlen wir eine genaue Kontrolle der Lieferverpackung. Im Schadensfall informieren Sie bitte sofort den Paketdienst/Spedition, da die Transportfirma die Haftung für Transportschäden trägt.

Lieferumfang:

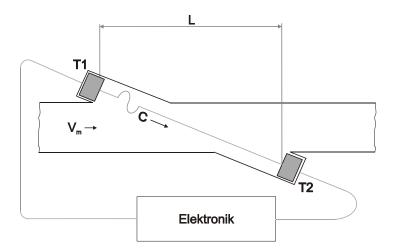
Zum Standard-Lieferumfang gehören:

• Ultraschall Durchflussmesser/ -wächter/ -zähler/ -dosierer Typ: DUK

Seite 4 DUK K17/0124

4. Bestimmungsgemäße Verwendung

Ein störungsfreier Betrieb des Geräts ist nur dann gewährleistet, wenn alle Punkte dieser Betriebsanleitung eingehalten werden. Für Schäden, die durch Nichtbeachtung dieser Anleitung entstehen, können wir keine Gewährleistung übernehmen.


5. Arbeitsweise

5.1 Allgemein

Die neuen KOBOLD Durchflussmesser des Typs DUK werden zum Messen, Überwachen, Zählen und Dosieren von niederviskosen wässrigen Flüssigkeiten eingesetzt.

Die Geräte arbeiten nach dem Laufzeitdifferenz-Verfahren. Dies beruht darauf, dass Ultraschallwellen in einem Medium von der Fließgeschwindigkeit beeinflusst werden.

Zwei gegenüber, versetzt in der Rohrleitung montierte Sensoren arbeiten gleichzeitig als Sender und Empfänger von Ultraschallsignalen. Ist kein Durchfluss vorhanden, so ist die Laufzeit der beiden Signale identisch. Bei fließendem Medium ist die Laufzeit gegen die Strömungsrichtung länger als die Laufzeit des Signales in Strömungsrichtung. Die durch einen Mikroprozessor ermittelte Laufzeitdifferenz ist proportional der Fließgeschwindigkeit.

Die Geräte können mit einem Schalt-, Frequenz- oder Analogausgang ausgerüstet werden. Außerdem steht eine universale Kompaktelektronik Typ C3T0 zur Auswahl, die zwei kundenseitig beliebig konfigurierbare Ausgänge beinhaltet.

6. Mechanischer Anschluss

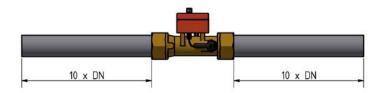
6.1 Betriebsbedingungen überprüfen

- Durchflussmenge
- max. Betriebsdrücke
- max. Betriebstemperatur

Der DUK ist im Allgemeinen den gleichen Belastungen ausgesetzt wie die Rohrleitung, in die er eingebaut ist. Deshalb ist der DUK von extremen Belastungen, z. B. Druckstößen mit starken dynamischen Rohrleitungsbewegungen, Vibrationen in der Nähe von Kreiselpumpen, hohen Messstofftemperaturen, Überflutung usw. freizuhalten.

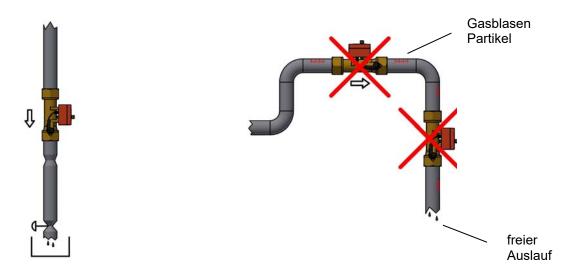
6.2 Einbau

- Entfernen Sie die Gewindeschutzkappen und vergewissern Sie sich, dass sich keine Verpackungsteile mehr im Gerät befinden.
- Der Einbau kann in vertikalen, horizontalen oder steigenden Leitungen erfolgen. Durchfluss in Pfeilrichtung.
- Druck- und Zugbelastung vermeiden
- Ein- und Ausgangsleitung in 50 mm Entfernung der Anschlüsse mechanisch befestigen
- Vermeidung von Ventilen oder größeren Reduktionen an der Einlaufstrecke (Messunsicherheit wird dadurch erhöht)
- Dichtheit der Verbindungen überprüfen
- Luftblasen im strömenden Medium können die Messfunktion stören oder die Messgenauigkeit herabsetzen



Achtung! Durch Öffnen des Schraubrings der C3T Elektronik erlischt die Garantie.

 Die Elektronikanzeige lässt sich per Software in 90°-Schritten drehen. Siehe Kapitel 5.3 der C3T0-Bedienungsanleitung.

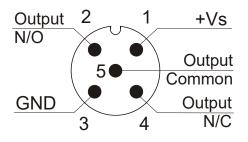

Seite 6 DUK K17/0124

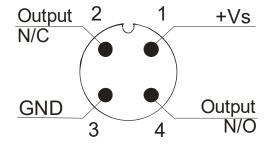
Ein- und Auslaufstrecke

Einbau von oben nach unten

diese Einbauorte vermeiden

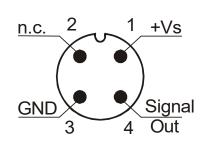
7. Elektrischer Anschluss

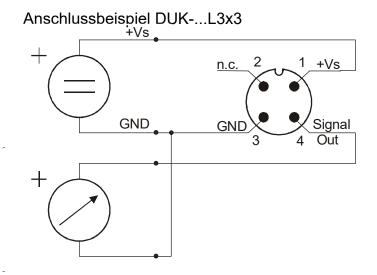

7.1 Allgemeines

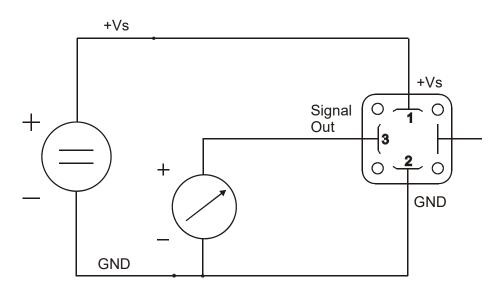

Achtung! Vergewissern Sie sich, dass die Spannungswerte Ihrer Anlage mit den Spannungswerten des Messgerätes übereinstimmen.

- Stellen Sie sicher, dass die elektrischen Versorgungsleitungen stromlos sind.
- Schließen Sie die Versorgungsspannung und das Ausgangssignal an die unten angegebenen PINs des Steckers an.
- Wir empfehlen als Versorgungskabelquerschnitt 0,25 mm².

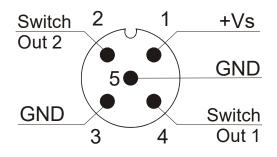
7.2 DUK-...S300

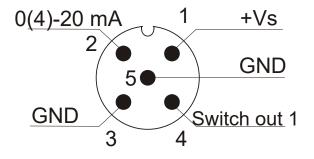


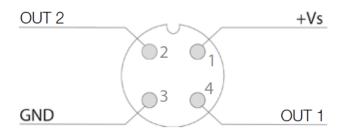

7.3 DUK-...S30D


Seite 8 DUK K17/0124

7.4 DUK-...F3x0; DUK-...L3x3




7.5 DUK-...L443


7.6 DUK-...C30...

7.7 DUK-...C34...

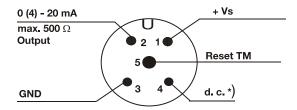
7.8 DUK-...C3T0

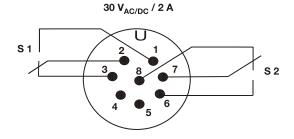
7.9 DUK-...Ex4R, DUK-...Gx4R

Kabelanschluss

Adernummer	DUKE14R	
	Zählelektronik	
1	+24 V _{DC}	
2	GND	
3	(0) 4-20 mA	
4	GND	
5	n. c.	
6	Reset Teilmenge	/
7	Relais S1	
8	Relais S1	
9	Relais S2	
10	Relais S2	

Adernummer	DUKG14R	
	Dosierelektronik	
1	+24 V _{DC}	
2	GND	
3	(0) 4-20 mA	
4	GND	
5	Control 1*	
6	Control 2*	
7	Relais S1	
8	Relais S1	
9	Relais S2	
10	Relais S2	

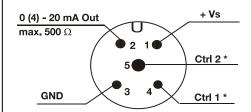

*Control 1<->GND: Start-Dosierung Control 2<->GND: Stop-Dosierung

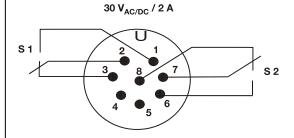

Control 1 <-> Control 2 <-> GND: Reset-Dosierung

Seite 10 DUK K17/0124

Steckeranschluss

-E34 R

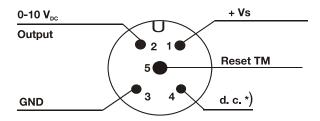


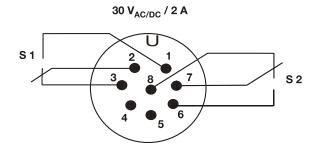


*) Kontakt nicht anschließen!

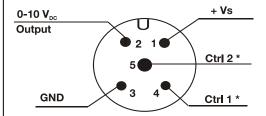
TM : Teilmenge

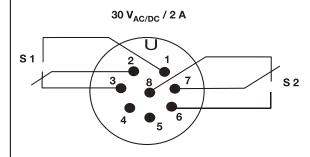
-G34 R





*Control 1<->GND: Start-Dosierung Control 2<->GND: Stop-Dosierung


Control 1 <-> Control 2 <-> GND: Reset-Dosierung


-E31 R

-G31 R

8. Inbetriebnahme

Die Messgeräte sind voreingestellt und nach dem elektrischen Anschluss betriebsbereit

8.1 Schaltpunkteinstellung DUK-...S300, DUK-...S30D

Schalterstellung	Schaltpunkt
0	Schaltfunktion deaktiviert
1	10 % v. ME
2	20 % v. ME
3	30 % v. ME
4	40 % v. ME
5	50 % v. ME
6	60 % v. ME
7	70 % v. ME
8	80 % v. ME
9	90 % v. ME

Durchfluss oberhalb Schaltpunkt: DUO - LED grün Durchfluss unterhalb Schaltpunkt: DUO - LED rot

8.2 Zählelektronik DUK-...Ex4R

Bedienung siehe Bedienungsanleitung ZED-Z

8.3 Dosierelektronik DUK-...Gx4R

Bedienung siehe Bedienungsanleitung ZED-D

8.4 Verwendung von Wasser abweichenden Medien (nur Option - C3T0)

Das DUK-...C3T0 ist in der Lage, viskose Medien bis zu einer max. Viskosität von 68 mm²/s zu messen. Es muss sich hierbei jedoch um eine homogene newtonsche Flüssigkeit handeln, jedoch nicht zwingend auf Wasser basieren.

Ab Werk ist das DUK-...C3T0 mit einem Datensatz für Wasser eingestellt. Soll ein anderes Medium eingesetzt werden, wird zum Austausch des Datensatzes die Bestelloption KOFICOM-IFMU sowie die kostenlose Software MEDIATOR Tool notwendig.

MEDIATOR Tool enthält die Datensätze gängiger Medien und wird regelmäßig mit Mediendaten erweitert. Auf Anfrage können, bei Vorlage der entsprechenden Daten, kundenspezifische Datensätze erstellt werden.

Die Software MEDIATOR Tool steht auf der Kobold Homepage zum kostenlosen Download zur Verfügung: www.kobold.com/qr/DUK

Seite 12 DUK K17/0124

9. Einstellung - Kompaktelektronik DUK-...C3T0

Die Bedienung und Einstellung der Elektronikoption -C3T0 wird in der Bedienungsanleitungsergänzung für C3T0 beschrieben.

10. Gerätestatus - Kompaktelektronik DUK-...C3T0

Anzeigetext	Fehlerart	Anzeigefarb	Beschreibung	Fehlerbeseitigung
Meas Error	Funktionseinschränkung	orange	Messrohr nicht oder nur teilgefüllt oder stationäre Luftblasen vor den Schallwandlern	Messrohr vollständig mit Medium füllen bzw. Luftblasen herausspülen
Temo overrun	Einschränkung der Messgenauigkeit	gelb	Der Messbereich der Temperaturmessung ist überschritten	Mediumstemperatur ggf. verringern
Temp underrun	Einschränkung der Messgenauigkeit	gelb	Der Messbereich der Temperaturmessung ist unterschritten	Mediumstemperatur ggf. vergrößern
Temp sensor	Gerätefehler	rot	Defekt im Temperatursensormesskreis	Reparatur beim Hersteller notwendig
Medium warning	Warnung - qualitative Einschränkung der Durchflussmessung	orange	Große Messwertschwankungen bedingt durch schlechte Strömungsverhältnisse im Ein-/ Auslauf oder Luftblasen im Medium	Ein- Auslaufstrecken einhalten, Vermeidung / Beseitigung von Luftblasen im Medium
MVM error	Gerätefehler	rot	Lesefehler interner Datenspeicher	Bei wiederholtem Auftreten Reparatur beim Hersteller notwendig
Signal warning	Warnung - qualitative Einschränkung der Flowmessung	orange	Starke Signaldämpfung durch das Medium	Geeignetes Medium verwenden oder schalldämpfende Anteile im Medium beseitigen

11. Einstellung - Kompaktelektronik DUK-...C3..

Schließen Sie die Kompaktelektronik nach vorhergehendem Anschlussbild an und versorgen Sie sie mit der angegebenen Spannung.

Nach dem Einschalten wird für 3 Sekunden der Messbereich (Endwert) angezeigt.

11.1 Tastenfunktion

Im Normalmodus (Messmodus)

: 3 Sek. drücken → Einstellmodus

: Schaltpunkt/Fensterpunkt anzeigen

Im Einstellmodus

: Nächste Stufe

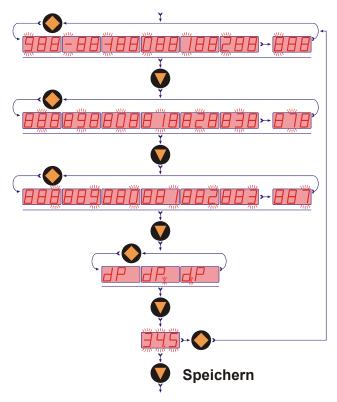
: Wert ändern

11.2 Einstellungen

Folgende Werte können in der Kompaktelektronik verändert werden:

	Anzeigebereich	Werksvoreinstellung
Schaltpunkt (SPo, SP1, SP2)	0999	0,00
Hysterese (HYS)	-1990	-0,00
Fensterpunkt (duo)	Schaltpunkt999	(inaktiv)
Kontakt-Typ (Con, Co1, Co2)	Schließer (no), Öffner (nc)	no (Schließer)
	oder Frequenz (Fr)**	
Startstrom (S-C)*	000999	000
Endstrom (E-C)*	000999	MessbEndwert
Startstrom Auswahl (SCS)	0 (0 mA), 4 (4 mA)	4 mA
Change Code (CCo)	000999	000

^{*} Anfangs- und Endwert des Durchflusses bezogen auf 0/4-20 mA.


Seite 14 DUK K17/0124

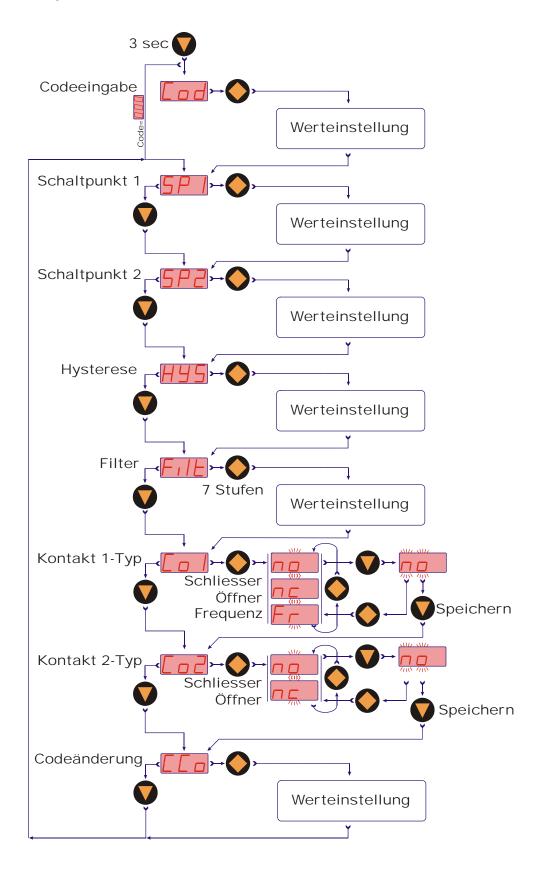
^{**} nicht kalibriert, Frequenz am Messbereichsendwert ca. 500 - 600Hz

11.3 Werteinstellung

Vom Hauptmenüpunkt (z. B.: Schaltpunkt, "SPo") gelangt man mit der "◆" Taste zur Werteinstellung. Die unten abgebildete Struktur zeigt die immer gleiche Routine zur Veränderung der einzelnen Parameter.

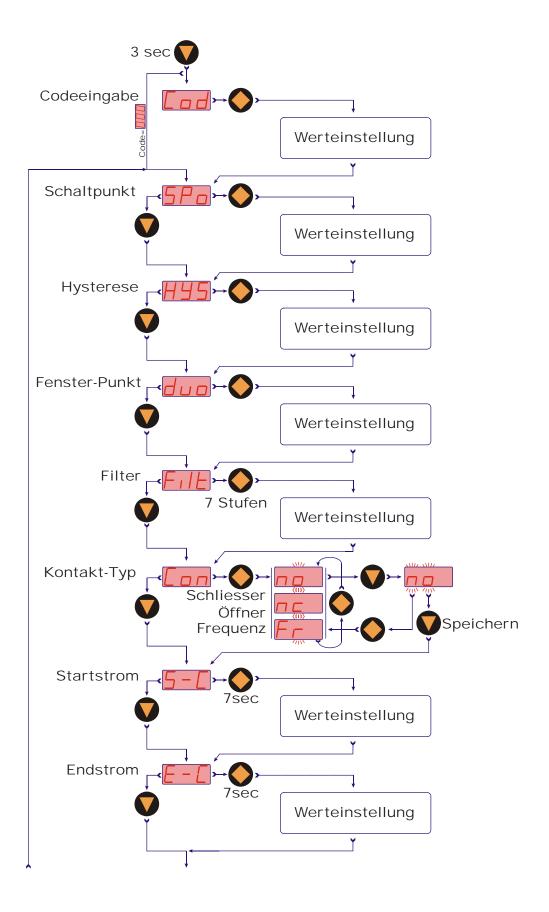
vom Hauptmenüpunkt

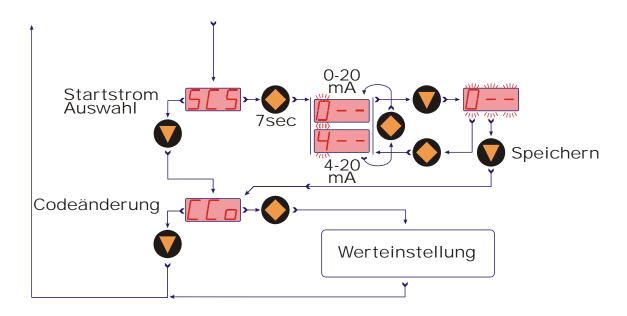
- 1. Stelle einstellen
- 2. Stelle einstellen
- 3. Stelle einstellen


Dezimalpunkt einstellen

gewählten Wert speichern oder neu eingeben

zum nächsten Hauptmenüpunkt


11.4 Einstellmodus


Kompaktelektronik DUK-...C30..

Seite 16 DUK K17/0124

Kompaktelektronik DUK-...C34..

11.5 Hauptmenüpunkte

11.5.1 Schaltpunkt

Im Menüpunkt "SPo, SP1, SP2" wird der Schaltpunkt eingegeben. Beim Einstellen kann ein Wert zwischen 000 und 999 gewählt werden. Zusätzlich wird diesem Wert eine Kommastelle zugeordnet. Die Kommastelle kann hinter der ersten, zweiten oder letzten Stelle (kein Komma) eingestellt werden. Überschreitet der Anzeigewert den eingestellten Schaltpunkt, so schaltet die Elektronik und signalisiert dies mit dem Leuchten der LED.

Ist die Hysterese gleich Null und der Fensterpunkt inaktiv, so schaltet die Elektronik bei Unterschreiten des Schaltpunktes zurück.

11.5.2 Hysterese

Nach dem Schaltpunkt kann im Menü "HYS" die Hysterese als negativer Wert eingegeben werden. Als Standardwert ist die Hysterese gleich Null. Dies kann jedoch im Betrieb zu nicht eindeutigem Schaltverhalten führen, wenn das Messsignal um den Schaltpunkt oder Fensterpunkt herum schwankt. Eine Vergrößerung der Hysterese kann hier Abhilfe schaffen. Die Hysterese bezieht sich auf den Schaltpunkt und den Fensterpunkt (Schaltpunkt minus Hysterese; Fensterpunkt plus Hysterese).

Beispiel: Schaltpunkt 100 L/min; Hysterese: -2,5 L/min

Die Elektronik schaltet bei Überschreiten von 100 L/min und schaltet bei Unterschreiten von 97,5 L/min zurück.

Seite 18 DUK K17/0124

11.5.3 Fensterpunkt (Duopunkt)

Neben dem Schaltpunkt kann ein Fensterpunkt "duo" (Duopunkt) definiert werden. Dieser muss größer als der Schaltpunkt sein. Mit dem Fensterpunkt und dem Schaltpunkt kann der Messwert in einem bestimmten Bereich überwacht werden. Der Schaltpunkt begrenzt den Messbereich zu kleineren Werten und der Fensterpunkt zu größeren Werten.

Ist der Fensterpunkt (Duopunkt) kleiner oder gleich dem Schaltpunkt, wird eine Fehlermeldung angezeigt (Er4), danach wird sein Wert gelöscht und dadurch seine Funktion unwirksam (sowohl bei Fensterpunkt- als auch bei Schaltpunktverstellung).

Die Werteinstellung ist analog zur Schaltpunkteinstellung.

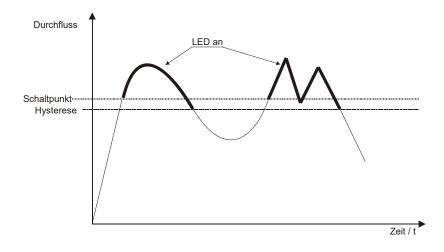
Der Fensterpunkt wird für Prozesse benötigt, in welchen der Messwert in einem bestimmten Bereich überwacht werden muss.

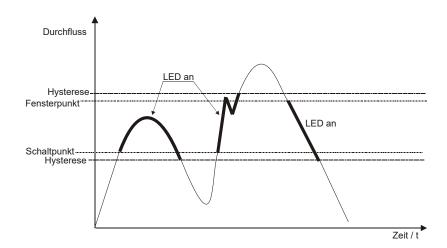
Beispiel: Schaltpunkt: 100 L/min; Fensterpunkt: 150 L/min; Hysterese: -1 L/min

Die Elektronik schaltet bei Überschreiten von 100 L/min. Bleibt der Messwert in den Grenzen zwischen 99 L/min (100-1) und 151 L/min (150+1), bleibt auch die Elektronik im aktiven Schaltzustand (LED an). Übersteigt er die 151 L/min oder unterschreitet er die 99 L/min, schaltet die Elektronik zurück.

Schaltverhalten

Das folgende Diagramm verdeutlicht das Schaltverhalten der Elektronik. Der Kontakt schließt (Kontakttyp: no/Schließer) bei Überschreiten des Schaltpunktes oder Unterschreiten des Fensterpunktes. Er öffnet nach Überschreiten des Fensterpunktes plus Hysterese oder Unterschreiten des Schaltpunktes minus Hysterese. Eine **LED** signalisiert den Schaltzustand der Elektronik.


11.5.4 Filter


Die Filterfunktion "Filt" bildet den gleitenden Mittelwert aus den Messwerten. Es können folgende Werte eingestellt werden (siehe Kap. 11.2 Einstellungen):

1/2/4/8/16/32/64

Der Filterwert bestimmt das dynamische Verhalten des Anzeigewertes. Je größer der eingestellte Wert, desto träger reagiert die Anzeige. Mit der Einstellung des Filterwertes "1" ist das Filter abgeschaltet, d. h. der Anzeigewert ist gleich dem ungefilterten Messwert.

Der integrierte Sprungdetektor reagiert bei einem Messwertsprung größer ca. 6,25 % vom Messbereichsendwert. Bei einem erkannten Messwertsprung wird der momentane Messwert direkt in die Anzeige übernommen.

11.5.5 Kontakt-Typ

Im Menüpunkt "Con, Co1 oder Co2" wird die Funktion des Transistor-Schaltausgangs eingestellt. Die Schaltfunktion wechselt von

no - Schließer auf

nc - Öffner auf

Fr - Frequenz (nur Con und Co1)

und zurück

Schließer bedeutet: Kontakt schließt bei Überschreiten des Schaltpunktes Öffner bedeutet: Kontakt öffnet bei Überschreiten des Schaltpunktes Frequenz bedeutet: Frequenzausgang proportional zum Durchflusswert

Seite 20 DUK K17/0124

11.5.6 Stromausgang

Der Stromausgang wird durch die Menüpunkte

"S-C" Startstrom Anzeigewert < > 0(4) mA

"E-C" Endstrom Anzeigewert < > 20 mA

"SCS" Startstrom Auswahl (0-20 mA oder 4-20 mA)

eingestellt. Im Menüpunkt Startstrom wird der Anzeigewert eingegeben, bei dem 0(4) mA fließen. Im Menüpunkt Endstrom wird der Anzeigewert eingegeben, bei dem 20 mA fließen.

11.5.7 Change Code

Die Codeänderung **"CCo"** sichert das Gerät vor unbefugten Veränderungen der eingestellten Geräteparameter. Ist der Code verschieden von 000, muss der Bediener beim Wechsel in den Einstellmodus zuerst den eingestellten Code eingeben.

12. Wartung

Das Messgerät ist wartungsfrei, wenn das Messmedium keine Ablagerungen verursacht. Um Probleme zu vermeiden, empfehlen wir den Einbau eines Filters z. B. den Magnetfilter, Type MFR.

Sollte eine Reinigung des Sensors notwendig sein, kann der Sensor mit einer geeigneten Flüssigkeit gespült werden. Ablagerungen können auch mit einem weichen Tuch oder ähnlichem aus dem Messrohr entfernt werden.

Arbeiten an der Elektronik dürfen nur durch den Lieferanten erfolgen, da sonst die Garantie erlischt.

13. Technische Daten

Siehe Datenblatt - über den QR-Code auf dem Gerät oder über www.kobold.com

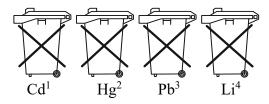
14. Bestelldaten

Siehe Datenblatt - über den QR-Code auf dem Gerät oder über www.kobold.com

15. Abmessungen

Siehe Datenblatt - über den QR-Code auf dem Gerät oder über www.kobold.com

Seite 22 DUK K17/0124


16. Entsorgung

Hinweis!

- Umweltschäden durch von Medien kontaminierte Teile vermeiden
- Gerät und Verpackung umweltgerecht entsorgen
- Geltende nationale und internationale Entsorgungsvorschriften und Umweltbestimmungen einhalten.

Batterien

Schadstoffhaltige Batterien sind mit einem Zeichen, bestehend aus einer durchgestrichenen Mülltonne und dem chemischen Symbol (Cd, Hg, Li oder Pb) des für die Einstufung als schadstoffhaltig ausschlaggebenden Schwermetalls versehen:

- 1. "Cd" steht für Cadmium.
- 2. "Hg" steht für Quecksilber.
- 3. "Pb" steht für Blei.
- 4. "Li" steht für Lithium

Elektro- und Elektronikgeräte

17. IO-Link - Kompaktelektronik DUK-...C3T0

17.1 IO-Link Funktion

Der DUK-XXXXXC3T0 Durchflussmesser verfügt standardmäßig über eine IO-Link Kommunikationsschnittstelle. Über diese Schnittstelle kann direkt auf die Prozess- und Diagnosedaten zugegriffen werden und das Gerät parametriert werden.

Ausgang 1 ist werkseitig auf IO-Link Funktion konfiguriert. Ist der IO-Link Kommunikationsmodus aktiv, so wird das "IOLINK" Symbol in der Statusanzeige für die Ausgänge in grün angezeigt. Das Einstellmenü bleibt bei aktivem IOLINK-Modus gesperrt und ist nicht zugänglich.

Damit das IO-Link Gerät korrekt am angeschlossenen IO-Link Master betrieben werden kann, ist es notwendig, die zum Gerät passende Gerätebeschreibungsdatei zu installieren.

Die Gerätebeschreibungsdateien (IODD) sind in der IODDfinder-Datenbank unter ioddfinder.io-link.com verfügbar.

Product-Typ	Device-ID [hex]	Device-ID [dec]
DUK-XXXXXC3T0	040200	262656

Wird das Gerät an einem IO-Link Master mit Portklasse A betrieben, so darf am Ausgang 2 (OUT2) nur noch ein maximaler Ausgangsstrom vom 50 mA entnommen werden (Strom- oder Binärausgang), ansonsten wird der IO-Link Master überlastet und es kann zu Funktionsstörungen kommen.

Seite 24 DUK K17/0124

18. Anhang - Kompaktelektronik DUK-...C3T0

18.1 IO-Link Prozessdatenstruktur

Prozessdatenlänge: 10 Byte

Byte number	Data	Bit counter	Format	Factor	Range	Value
0 - 3	Flow	32 Bit	FloatT		+/-1,4*10-45 +/-	L/min
4 - 7	Volume	32 Bit	FloatT		+/-1,4*10-45 +/-	L
	Temperature	12 Bit	IntegerT	1/10	+/-204,8	°C
	reserved	1 Bit	BooleanT			
8 - 9	reserved	1 Bit	BooleanT			
	Status OUT1	1 Bit	BooleanT			
	Status OUT2	1 Bit	BooleanT			

F	lc	w	(3	2 E	3it,	FI	oat	(T)																								
0)	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
			E	Зyt	e 0)						Byt	e 1						E	Зyt	e 2)						3yt	e 3			

	Vc	lu	me	(3	2 E	3it,	FI	oat	:T)																							
Ī	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
			E	3yt	e 4						I	Byt	e 5)					E	Зyt	e 6	;					E	3yt	e 7	,		

7	Ге	m	pe	rat	ure	(1	2 E	3it,	Int	eg	er⊺	Γ)				
C)	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
			I	Byt	e 8	}					E	3yt	e 9			

Solange ein Diagnosestatus vom Typ "Error" für die Prozesswerte Durchfluss oder Temperatur aktiv ist, sind die entsprechend übertragenden Prozesswerte ungültig. Nur bei entsprechend deaktivem Diagnosestatus sind die Prozesswerte gültig.

18.2 IO-Link Diagnoseinformation

Event Code [hex]	Event Code [dec]	Name	Device Status	Туре	Definition
0x7710	30480	Short Circuit		Error	check installation
0x8C10	35856	Process Variable Range Overrun		Warning	process data uncertain
0x8C20	35872	Measurement Range Overrun		Error	check application
0x8C30	35888	Process Variable Range Underrun		Warning	process data uncertain
0x1838	6200	Test Event For Protocol Testing		Error	first test event
0x1839	6201	Test Event For Protocol Testing		Error	second test event
0x183A	6202	NVM Error	4	Error	non-volatile memory is corrupt
0x183B	6203	Subslave Lost		Error	communication to subslave interrupted
0x183C	6204	Subslave Not Found	4	Error	cummunication to subslave couldn`t be astablished
0x183D	6205	Counter Overflow	2	Error	volume or partvolume counter overflowed
0x183E	6206	Simulation Active		Warning	indicates that one of the simulations is running
0x183F	6207	Flow MRE Overrun		Warning	measuring range overrun
0x1840	6208	Flow MRS Underrun		Warning	measuring range underrun
0x1841	6209	Flow Overflow Overrun	2	Warning	overflow range overrun
0x1842	6210	Flow Underflow Underrun	2	Warning	underflow range underrun
0x1847	6215	Temperature MRE Overrun		Warning	measuring range overrun
0x1848	6216	Temperature MRS Underrun		Warning	measuring range underrun
0x1849	6217	Temperature Overflow Overrun	2	Warning	overflow range overrun

Seite 26 DUK K17/0124

Event Code [hex]	Event Code [dec]	Name	Device Status	Туре	Definition
0x184A	6218	Temperature Underflow Underrun	2	Warning	underflow range underrun
0x185F	6239	Meas Error	3	Warning	ultrasonic measurement out of range
0x1860	6240	Temp Overrun	1	Warning	SOS Temperature over range
0x1861	6241	Temp Underrun	1	Warning	SOS Temperature under range
0x1862	6242	Temp Sensor	1	Warning	PT1000 Temperature sensor broken wire
0x1863	6243	Medium Warning	3	Warning	Too many jumps in ultrasonic measurement
0x1864	6244	NVM Error	1	Warning	Checksum of NVM is wrong
0x1865	6245	Signal Warning	3	Warning	Ultrasonic signal is very attenuated

18.3 IO-Link System Kommando Tabelle

Command (hex)	Command (hex)	Command name
82	130	Restore factory settings
A0	160	Reset MinMax Flow
A1	161	unused
A2	162	Reset MinMax Temperature
A3	163	Reset Part Volume Counter
A4	164	unused
A5	165	unused
A6	166	unused
A7	167	unused
A8	168	Start Simulation Flow
A9	169	unused
AA	170	Start Simulation Temperature
AB	171	Start Simulation Part Volume
AC	172	unused
AD	173	unused
AE	174	unused
AF	175	unused
B0	176	Stop Simulation Flow
B1	177	unused
B2	178	Stop Simulation Temperature
B3	179	Stop Simulation Part Volume
B4	180	unused
B5	181	unused
B6	182	unused
B7	183	unused
B8	184	Events Handling ON
B9	185	Events Handling OFF

Seite 28 DUK K17/0124

18.4 IO-Link ISDU Parameter Tabelle

Parameter, die sich auf die Messwerte Durchfluss, Temperatur oder Volumen beziehen, müssen in den Grundeinheiten eingegeben und ggf. vorher umgerechnet werden. Die Grundeinheiten sind:

Durchfluss: L/min

Temperatur: °C

Volumen: Liter

Einheiten Umrechnungstabelle

Kategorie: D	urchfluss	
Einheit	Beschreibung	Umrechnung
L/m	Liter pro Minute (Grundeinheit)	-
L/h	Liter pro Stunde	1 L/h = 0,0167 L/m
mL/m	Milliliter pro Minute	1 mL/m = 0,001 L/m
m3/h	Kubikmeter pro Stunde	1 m3/h = 16,667 L/m
gal/m	US Gallonen pro Minute	1 gal/m = 3.7854 L/m
gal/h	US Gallonen pro Stunde	1 gal/h = 0,06309 L/m
galk/m	UK Gallonen pro Minute	1 galk/m = 4,54609 L/m
galk/h	UK Gallonen pro Stunde	1 galk/h = 0,07577 L/m
L/s	Liter pro Sekunde	1 L/s = 60 L/m
mL/s	Milliliter pro Sekunde	1 mL/s = 0,0000167 L/m
USER	Benutzereinheit	1 Benutzereinheit = USER * L/m

Kategorie: To	Kategorie: Temperatur						
Einheit	Beschreibung	Umrechnung					
°C	Grad Celsius (Grundeinheit)	-					
°F	Grad Fahrenheit	x °C = (32 + x *1,8) °F					
USER	Benutzereinheit	1 Benutzereinheit = USER * °C					

Kategorie: \	Kategorie: Volumen				
Einheit	Beschreibung	Umrechnung			
L	Liter (Grundeinheit)	-			
mL	Milliliter	1 mL = 0,001 L			
m3	Kubikmeter	1 m3 = 1000 L			
galUS	US Gallone	1 galUS = 3.7854 L			
galUK	UK Gallone	1 galk = 4,54609 L			
barrel	Barrel (US)	1 barrel = 158,99 L			
USER	Benutzereinheit	1 Benutzereinheit = USER * L			

Index [hex]	Object Name	Definition	Default value	Max Value	Min Value	Length [Bytes]	Data Type	Access
System						•		
0x0002	SystemCommand	See Table "Comand Codes"				1	UInteg erT	W
Product	Identification (Vendor s	pecific parameters)						
0x0010	VendorName		Kobold Messring			max. 20	StringT	R
0x0011	VendorText		www.kobold.c om			max. 32	StringT	R
0x0012	ProductName		DUK- XXXXXC3T0			max. 16	StringT	R
0x0013	ProductID		DUK- XXXXXC3T0			max. 16	StringT	R
0x0014	ProductText		DUK-C3T0			max. 32	StringT	R
0x0015	Serialnumber	only read parameter	only read parameter			max. 8	StringT	R
0x0016	HardwareRevision					max. 8	StringT	R
0x0017	FirmwareRevision	Firmware Revision is constant in FW	Firmware Revision is constant in FW			max. 8	StringT	R
0x0018	ApplicationDeviceTag	tag name is from user configurable	tag name is from user configurable			32	StringT	R/W
0x0019	FunctionTag	function tag is from user configurable	function tag is from user configurable			32	StringT	R/W
0x0020	LocationTag	location tag is from user configurable	location tag is from user configurable			32	StringT	R/W
Device S	tatus Information							
0x0024	DeviceStatus	0 - Device OK 1 - Maintenance required 2 - Out of specification 3 - Functional check 4 - Failure				1	UInteg erT	R
0x0025	DetaildDeviceStatus					max. 20	ArrayT of OctetSt ringT3	R
Display (Configuration							
0x0100	DisplayOrientation	Orientation of display	1	(1) - Landscape (2) - Portrait Flip (3) - Landscape Flip (4) - Portrait		1	UInteg erT	R/W
0x0103	DisplayLayout	Single or dual layout	1	(1) - single (2) - dual		1	UInteg erT	R/W
0x0104	UpperDisplay	Source for the upper display	0	(1) - Flow (2) - Volume (3) - Temper (4) - Part Vo	ature	1	UInteg erT	R/W

Seite 30 DUK K17/0124

Index [hex]	Object Name	Definition	Default value	Max Value	Min Value	Length [Bytes]	Data Type	Access
0x0105	LowerDisplay	Source for the lower display	2	(1) - Flow (2) - Volume (3) - Temper (4) - Part Vol	ature	1	UInteg erT	R/W
0x0106	DisplayRefreshTime	Refresh intervall for the display [s]	0,5	(1) - Off (2) - Value (3) - MinMax		4	FloatT	R/W
0x010A	LeftHotkeyFunction	Function for left hotkey	0	(1) - Off (2) - Value (3) - MinMax	<	1	UInteg erT	R/W
0x010B	RightHotkeyFunction	Function for right hotkey	0	(1) - Flow (2) - Volume (3) - Temper (4) - Part Vol	ature	1	UInteg erT	R/W
0x010C	LeftHotkeySource	Source for the left hotkey	0	(1) - Flow (2) - Volume (3) - Temperature (4) - Part Volume		1	UInteg erT	R/W
0x010D	RightHotkeySource	Source for the right hotkey	0	(1) - low (2) - middle (3) - high		1	UInteg erT	R/W
0x010E	SensitivityOpticalKeys	Sensitivity for the optical keys	0			1	UInteg erT	R/W
0x010F	AutomaticMenuLeave	Automatic menu leave if the timeout [s] is hit. 0 = timeout not active	0	60	0	1	UInteg erT	R/W
Output 1	L (In IO-Link mode outpu	1	ed individual, ope	erating mode	can only be cl	hanged m	anually)	
0x0112	OUT2AlarmFunction	Limit or window function for the alarm output	0	(1) - Limit (2) - Window	V	1	UInteg erT	R/W
0x0113	OUT2AlarmOutputTyp e	Alarmoutput NPN, PNP or Pushpull	0	(1) - NPN (2) - PNP (3) - PushPul	II	1	UInteg erT	R/W
0x0114	OUT2AlarmSwitchFunc tion	Alarmoutput normally opened or closed	0	(1) - normall (2) - normall		1	UInteg erT	R/W
0x0115	OUT2AlarmThreshold [LPM/°C]	Threshold for the alarmoutput	1,0	MRE	MRS	4	FloatT	R/W
0x0119	OUT2AlarmLowerThre shold [LPM/°C]	Threshold for the alarmoutput used by the windowfunction	1,0	OUT2Alarm Threshold	MRS	4	FloatT	R/W
0x011D	OUT2AlarmHysteresis [LPM/°C]	Switching hysteresis for the alarmoutput	1,0	(MRE-MRS)	0,0	4	FloatT	R/W
0x0121	OUT2AlarmSuppressio nFactor	How many times the threshold must be hit in order to switch the alarm output	0	60	0	1	UInteg erT	R/W
0x0122	OUT2AlarmSuppressio nDirection	for which direction the suppression factor is used	0	(1) - Up (2) - Down (3) - Both		1	UInteg erT	R/W

Index [hex]	Object Name	Definition	Default value	Max Value	Min Value	Length [Bytes]	Data Type	Access
0x0124	OUT2AnalogNamurSta ndard	If enabled (1) the analogoutput conforms with the NAMUR Standard NE42. If disabled (0) the analogoutput stays in his equivalent range (e.g. 4-20mA)	1	(1) - NAMUR disabled (2) - NAMUR enabled		1	UInteg erT	R/W
0x0125	OUT2AnalogValue0mA	The value from the slot used for the OmA scaling point [LPM/°C]	0,0	OUT2Analo g Value20mA	MRS	4	FloatT	R/W
0x0129	OUT2AnalogValue4mA	The value from the slot used for the 4mA scaling point [LPM/°C]	0,0	OUT2Analo g Value20mA	MRS	4	FloatT	R/W
0x012D	OUT2AnalogValue20m A	The value from the slot used for the 20mA scaling point [LPM/°C]	100,0	MRE	OUT2Analo g Value0mA	4	FloatT	R/W
0x0131	OUT2AnalogValue0V	The value from the slot used for the OV scaling point [LPM/°C]	0,0	OUT2Analo g MRS Value10V		4	FloatT	R/W
0x0135	OUT2AnalogValue2V	The value from the slot used for the 2V scaling point [LPM/°C]	0,0	OUT2Analo g Value10V	MRS	4	FloatT	R/W
0x0139	OUT2AnalogValue10V	The value from the slot used for the 10V scaling point [LPM/°C]	100,0	OUT2Analo MRE g Value0V		4	FloatT	R/W
0x0150	OUT2PulseVolume	The volume represented by one pulse [L]	1,0	999,9	0,000001	4	FloatT	R/W
0x0154	OUT2PulseVolumeUnit	Unit used for the pulse output	1	(1) - USER (2) - L (3) - mL (3) - m3 (4) - galUS (5) - galUK (6) - Barrel		1	UInteg erT	R/W
0x0155	OUT2PulseVolumeUnit User	User Unit used for the pulse output	1,0	9999,9	0,001	4	FloatT	R/W
0x0159	OUT2PulseWidth	The width of each pulse [ms]	1	20000	1	2	UInteg erT	R/W
0x015B	OUT2FrequencyatFS	The max. frequency for the output [Hz]	500	1000	50	2	UInteg erT	R/W
0x015D	OUT2FrequencyOverfl ow	The overflow frequency of the max frequency [%]	1	100	0	1	UInteg erT	R/W
0x015E	OUT2FrequencyValue0 Hz	The value from the slot used for the 0Hz scaling point [LPM/°C]	0,0	OUT2Frequ encyValue MaxHz	MRS	4	FloatT	R/W

Seite 32 DUK K17/0124

Index [hex]	Object Name	Definition	Default value	Max Value	Min Value	Length [Bytes]	Data Type	Access
0x0162	OUT2FrequencyValue MaxHz	The value from the slot used for the max Hz scaling point [LPM/°C]	100,0	MRE	OUT2Frequ e ncyValue0 Hz	4	FloatT	R/W
0x0166	OUT1CtrlFunction	Controlinputfunction -> Off or Memoryreset	0	1	0	1	UInteg erT	R/W
Output 2	2	•						
0x0177	OUT2Source	Source for the output	0	(1) - Flow (2) - Volume (3) - Temper (4) - Part Vol	ature	1	UInteg erT	R/W
0x0178	ОИТ2Туре	Configuration of the output -> 0-20mA, Pulse, Frequency, etc.	0	(1) - disabled (2) - Alarm Output (2) - 4-20mA (3) - 0-20mA (4) - 2-10V (5) - 0-10V (6) - Pulse Output (7) - Frequency Output		1	UInteg erT	R/W
0x0179	OUT2AlarmFunction	Limit or window function for the alarm output	0	(1) - Limit (2) - Window		1	UInteg erT	R/W
0x017A	OUT2AlarmOutputTyp e	Alarmoutput NPN, PNP or Pushpull	0	(1) - NPN (2) - PNP (3) - PushPull		1	UInteg erT	R/W
0x017B	OUT2AlarmSwitchFunc tion	Alarmoutput normally opened or closed	0	(1) - normall (2) - normall		1	UInteg erT	R/W
0x017C	OUT2AlarmThreshold [LPM/°C]	Threshold for the alarmoutput	1,0	MRE	MRS	4	FloatT	R/W
0x0180	OUT2AlarmLowerThre shold [LPM/°C]	Threshold for the alarmoutput used by the windowfunction	1,0	OUT2Alarm Threshold	MRS	4	FloatT	R/W
0x0184	OUT2AlarmHysteresis [LPM/°C]	Switching hysteresis for the alarmoutput	1,0	(MRE-MRS)	0,0	4	FloatT	R/W
0x0188	OUT2AlarmSuppressio nFactor	How many times the threshold must be hit in order to switch the alarm output	0	60	0	1	UInteg erT	R/W
0x0189	OUT2AlarmSuppressio nDirection	for which direction the suppression factor is used	0	(1) - Up (2) - Down (3) - Both		1	UInteg erT	R/W
0x018B	OUT2AnalogNamurSta ndard	If enabled (1) the analogoutput conforms with the NAMUR Standard NE42. If disabled (0) the analogoutput stays in his equivalent range (e.g. 4-20mA)	1	(1) - NAMUR disabled (2) - NAMUR enabled		1	UInteg erT	R/W

Index [hex]	Object Name	Definition	Default value	Max Valu	ne Min Value	Length [Bytes]	Data Type	Access
0x018C	OUT2AnalogValue0mA	The value from the slot used for the OmA scaling point [LPM/°C]	0,0	OUT2Ana g Value20n	MRS	4	FloatT	R/W
0x0190	OUT2AnalogValue4mA	The value from the slot used for the 4mA scaling point [LPM/°C]	0,0	g	OUT2Analo g MRS Value20mA		FloatT	R/W
0x0194	OUT2AnalogValue20m A	The value from the slot used for the 20mA scaling point [LPM/°C]	100,0	MRE	OUT2Analo g Value0mA	4	FloatT	R/W
0x0198	OUT2AnalogValue0V	The value from the slot used for the OV scaling point [LPM/°C]	0,0	OUT2Ana g Value10V	MRS	4	FloatT	R/W
0x019C	OUT2AnalogValue2V	The value from the slot used for the 2V scaling point [LPM/°C]	0,0	OUT2Ana g Value10V	OUT2Analo MRS		FloatT	R/W
0x01A0	OUT2AnalogValue10V	The value from the slot used for the 10V scaling point [LPM/°C]	100,0	MRE	OUT2Analo g Value0V	4	FloatT	R/W
0x01B7	OUT2PulseVolume	The volume represented by one pulse [L]	1,0	999,9	0,000001	4	FloatT	R/W
0x01BB	OUT2PulseVolumeUnit	Unit used for the pulse output	1	(2) - L (3) - mL (3) - m3 (4) - galU	(3) - mL (3) - m3 (4) - galUS (5) - galUK		UInteg erT	R/W
0x01BC	OUT2PulseVolumeUnit User	User Unit used for the pulse output	1,0	9999,9	0,001	4	FloatT	R/W
0x01C0	OUT2PulseWidth	The width of each pulse [ms]	1	20000	1	2	UInteg erT	R/W
0x01C2	OUT2FrequencyatFS	The max. frequency for the output [Hz]	500	1000	50	2	UInteg erT	R/W
0x01C4	OUT2FrequencyOverfl ow	The overflow frequency of the max frequency [%]	1	100	0	1	UInteg erT	R/W
0x01C5	OUT2FrequencyValue0 Hz	The value from the slot used for the OHz scaling point [LPM/°C]	0,0	OUT2F requ encyVa lue MaxHz	equ ncyVa MRS ue		FloatT	R/W
0x01C9	OUT2FrequencyValue MaxHz	The value from the slot used for the max Hz scaling point [LPM/°C]	100,0	MRE	OUT2Freque ncyValue0Hz	4	FloatT	R/W

Seite 34 DUK K17/0124

Index [hex]	Object Name	Definition	Default value	Max Valu	ue Min Value	Length [Bytes]	Data Type	Acces
Dosing					<u> </u>			
0x01DE	DosingValue	Dosingvalue [L]	0,0	9999,9	0,0	4	FloatT	R/W
0x01E2	DosingCorrectionValue	Correction value which is added to the dosing value for the complete dosing counter [L]	0,0	Dosing Value	minus Dosing Value	4	FloatT	R/W
0x01E6	DosingUnit	Unit used for the dosing function	1	(1) - USER (2) - L (3) - mL (3) - m3 (4) - galUS (5) - galUK (6) - Barrel		1	UInteg erT	R/W
0x01E7	DosingUnitUser	User Unit used for the dosing function	1,0	9999,9	0,001	4	FloatT	R/W
0x01EB	DosingTimeout	Timeout [s] for no flow	0,5	10,0	0,5	4	FloatT	R/W
0x01EF	DosingCounter	Saved dosing volume counter stats	0,0	999999	-999999,0	4	FloatT	R
Service								
0x01F3	ServiceUserPassword	Password for user service menu and main menu	0	99999	0	4	UInteg erT	R/W
0x01F7	ServiceUserMenuLock ed	Whether main menu is locked or not	0	(1) - not (2) - lock		1	UInteg erT	R/W
0x01F8	SimulationAutoStop	Auto stop for Simulation after time [min]	10	31 1		1	UInteg erT	R/W
Misc								
0x01FA	LanguageSelection	Language selection	0	(1) - Engl (2) - Ger (3) - Frer (4) - Spar	man nch	1	UInteg erT	R/W
0x028A	OperatingHoursCount	Operating hours counter	0	429496 7296	0	4	UInteg erT	R
0x028F	ProductionProductVari antName	Product Variant Name	XXX- XXXXXXXXXXX			16	StringT	R
0x029F	ProductionProductTyp eKey	Product Type Key	XXX- XXXXXXXXXXX			16	StringT	R
Flow								
0x02F5	CutOff	Cut off for flow value [LPM]	0,0	MRE	0.0	4	FloatT	R/W
0x02F9	Unit	Unit used for flow	1	(1) - USER (2) - L/m (3) - mL/m (4) - L/h (4)- m3/h (5) - galUS/m (6) - galUS/h (7) - galUK/m (8) - galUK/h (9) - L/s (10) - mL/s		1	UInteg erT	R/W

Index [hex]	Object Name	Definition	Default value	Max Valu	ue	Min Value	Length [Bytes]	Data Type	Acces s
0x02FA	UserUnit	User Unit used for flow	1,0	9999,9	9999,9 0,001		4	FloatT	R/W
0x0313	SimMode	Mode of the Simulation: Static, Triangle or Monotonic	0	(1) - Static(2) - Triangle(3) - Monotonic			1	UInteg erT	R/W
0x0314	SimStartValue	Value to start with the simulation [LPM]	0,0	99999, 99	-99	999,99	4	FloatT	R/W
0x0318	SimIncrementValue	Incrementation value of the simulation [LPM]	10,0	99999, 99	-99	999,99	4	FloatT	R/W
0x031C	SimNumberIntervals	Number of intervals to simulation	20	65000	1		2	UInteg erT	R/W
0x031E	SimTimingIntervals	Timinig in ms between intervals	50	50000	10		2	UInteg erT	R/W
0x0320	ValueInSiUnit	Saved flow value in SI unit [LPM]	0,0	999999	-99	9999,0	4	FloatT	R
0x0324	MinValueInSiUnit	Saved min flow value in SI unit [LPM]	0,0	999999	-99	9999,0	4	FloatT	R
0x0328	MaxValueInSiUnit	Saved max flow value in SI unit [LPM]	0,0	999999 ,0	1 -999999 ()		4	FloatT	R
Volume									
0x0358	CountingType	counting type for a volume slot -> absolute or bidirectional	0	(1) - absolute (2) - bidirectional			1	UInteg erT	R/W
0x035D	Unit	Unit used for volume	1	(2) - L (3) - mL (3)- m3 (4) - gall	(3) - mL (3)- m3 (4) - galUS (5) - galUK		1	UInteg erT	R/W
0x035E	UserUnit	User Unit used for volume	1,0	9999,9	0,0	01	4	FloatT	R/W
0x0384	ValueInSiUnit	Saved volume value in SI unit	0,0	999999	-99	9999,0	4	FloatT	R
Tempera	ature								
0x03C1	Unit	Unit used for temperature	1	(0) - USE (1) - °C (2) - °F	R		1	UInteg erT	R/W
0x03C2	UserUnit	User Unit used for temperature [°C]	1,0	9999,9	0,00	01	4	FloatT	R/W
0x03DB	SimMode	Mode of the Simulation: Static, Triangle or Monotonic	0	(1) - Stat (2) - Tria (3) - Mor	ngle	nic	1	UInteg erT	R/W
0x03DC	SimStartValue	Value to start with the simulation [°C]	0,0	99999, 99	1 _qqqqq qq		4	FloatT	R/W
0x03E0	SimIncrementValue	Incrementation value of the simulation [°C]	10,0	99999, 99	-99	999,99	4	FloatT	R/W
0x03E4	SimNumberIntervals	Number of intervals to simulation	20	65000	1		2	UInteg erT	R/W
0x03E6	SimTimingIntervals	Timinig in ms between intervals [ms]	50	50000	10		2	UInteg erT	R/W

Seite 36 DUK K17/0124

Index [hex]	Object Name	Definition	Default value	Max Val	ue Min Value	Length [Bytes]	Data Type	Acces s
0x03E8	ValueInSiUnit	Saved temperature value in SI unit [°C]	0,0	999999	-999999,0	4	FloatT	R
0x03EC	MinValueInSiUnit	Saved min temperature value in SI unit [°C]	0,0	999999	-999999,0	4	FloatT	R
0x03F0	MaxValueInSiUnit	Saved max temperature value in SI unit [°C]	0,0	999999	-999999,0	4	FloatT	R
Part Vol	ume							
0x0420	CountingType	counting type for a volume slot -> absolute or bidirectional	0	(1) - absolute (2) - bidirectional		1	UInteg erT	R/W
0x0425	Unit	Unit used for part volume	1	(1) - USER (2) - L (3) - mL (3)- m3 (4) - galUS (5) - galUK (6) - Barrel		1	UInteg erT	R/W
0x0426	UserUnit	User Unit used for part volume	1,0	9999,9	0,001	4	FloatT	R/W
0x043F	SimMode	Mode of the Simulation: Static, Triangle or Monotonic	0	(1) - Stat (2) - Tria (3) - Moi	ngle	1	UInteg erT	R/W
0x0440	SimStartValue	Value to start with the simulation	0,0	99999, 99	-99999,99	4	FloatT	R/W
0x0444	SimIncrementValue	Incrementation value of the simulation	10,0	99999 <i>,</i> 99	-99999,99	4	FloatT	R/W
0x0448	SimNumberIntervals	Number of intervals to simulation	20	65000	1	2	UInteg erT	R/W
0x044A	SimTimingIntervals	Timinig in ms between intervals	50	50000	10	2	UInteg erT	R/W
0x044C	ValueInSiUnit	Saved part volume value in SI unit	0,0	999999	-999999,0	4	FloatT	R

<u>Legende:</u>

MRE - Measuring Range End MRS - Measuring Range Start

19. Herstellererklärung

MANUFACTURER'S DECLARATION OF CONFORMITY

We:

Kobold Messring GmbH Nordring 22-24 65719 Hofheim Germany

declare under our own responsibility that the product(s):

DUK-****C3T0 IO-Link Device

to which this declaration refers conform to:

- IO-Link Interface and System Specification, V1.1.3, June 2019 (NOTE 1,2)
- Additional conformance to Device Profiles (If checked refer to Part A on page 2)
- Conformance exceptions
 (If checked refer to Part B on page 2)

The conformity tests are documented in the test report(s):

IO-Link_Device_Test_Report_DUK-C3T0_220905.pdf

Issued at Hofheim, 25.11.2022

Authorized signatory

 Name:
 Hans Volz
 Name:
 Manfred Wenzel

 Title:
 General Manager
 Title:
 Proxy Holder

Signature:

MD-Version: V1.1.3 / 2022-01

Reproduction and all distribution without written authorization prohibited

NOTE 1 Relevant Test specification is V1.1.3, January 2021 NOTE 2 Additional validity in Package 2020 and Corrigendum

Signature:

Seite 38 DUK K17/0124

Part A - Additional conformance to Device Profiles

	Specification			
\boxtimes	IO-Link Common Profile Specification, V1.1, Dec. 2021			
	IO-Link Profile BLOB Transfer & Firmware Update Specification, V1.1, Sept. 2019			
	IO-Link Smart Sensors 2 nd Edition Specification, V1.1, Sept. 2021			

Part B - Conformance exceptions

We herewith declare the following deviations to the related specifications	Reason		
none	-		

20. EU-Konformitätserklärung

Wir, Kobold Messring GmbH, Nordring 22-24, 65719 Hofheim, Deutschland, erklären hiermit in alleiniger Verantwortung, dass das Produkt

Ultraschall Durchflussmesser/ -wächter/ -zähler/ -dosierer Typ: DUK -...

folgende EU-Richtlinien erfüllt:

2011/65/EU RoHS (Kategorie 9)

2015/863/EU Delegierte Richtlinie (RoHS III)

und mit den unten angeführten Normen übereinstimmt:

EN IEC 63000:2018

Technische Dokumentation zur Beurteilung von Elektro- und Elektronikgeräten hinsichtlich der Beschränkung gefährlicher Stoffe

Zusätzlich für L/F/S-Elektronikoptionen und K/E/G-Elektronik kompakt:

EN IEC 61326-1:2021

Elektrische Mess-, Steuer-, Regel- und Laborgeräte – EMV-Anforderungen, Teil 1: Allgemeine Anforderungen, Industrieller Bereich, Messung der Störfestigkeit gegenüber HF-Feld bis 1 GHz

2014/30/EU Elektromagnetische Verträglichkeit

Zusätzlich für Elektronikoption C3T0 und C30/C34-Elektroniken:

EN IEC 61326-1:2021

Elektrische Mess-, Steuer-, Regel- und Laborgeräte – EMV-Anforderungen, Teil 1: Allgemeine Anforderungen, Industrieller Bereich

2014/30/EU Elektromagnetische Verträglichkeit

Hofheim, den 10. Oktober 2023

H. Volz J. Burke
Geschäftsführer Compliance Manager

Seite 40 DUK K17/0124

21. UK Declaration of Conformity

We, KOBOLD Messring GmbH, Nordring 22-24, 65719 Hofheim, Germany, declare under our sole responsibility that the product:

Ultrasonic Flowmeter/ -Monitor/ -Counter/ -Dosing Unit Model: DUK-...

to which this declaration relates is in conformity with the following UK directives stated below:

S.I. 2012/3032 The Restriction of the Use of Certain Hazardous

Substances in Electrical and Electronic Equipment

Regulations 2012

Also, the following standards are fulfilled:

BS EN IEC 63000:2018

Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances.

Additional for L/F/S electronics options and K/E/G electronics compact:

BS EN IEC 61326-1:2021

Electrical equipment for measurement, control and laboratory use. EMC requirements. General requirements, Industrial area, Measurement of the immunity to interference from the HF field up to 1 GHz

S.I. 2016/1091 Electromagnetic Compatibility Regulations 2016

Additional for electronics option C3T0 and C30/C34 electronics:

BS EN IEC 61326-1:2021

Electrical equipment for measurement, control and laboratory use. EMC requirements. General requirements, Industrial area

S.I. 2016/1091 Electromagnetic Compatibility Regulations 2016

Hofheim, 10 October 2023

H. Volz J. Burke General Manager Compliance Manager