

Bedienungsanleitung für Füllstandssensor

Typ: NGR

Inhalt

1 NGR-F üllstandsensor	5
1.1 Funktionsprinzip	5
1.2 Sicherheitshinweise	5
1.3 Einsatzbereiche	
1.4 Einbaubedingungen	6
1.5 Elektrischer Anschluss	9
1.6 Display	9
1.7 IO-Link	
1.8 Montage Koaxialrohr	10
1.9 Sonde kürzen/tauschen	
1.10 Sondenstab montieren	13
2 Inbetriebnahme des NGR	14
2 1 Kurzinbetriebnahme (mit Werkseinstellung)	14
2.2 Frweiterte Inbetriebnahme	
2.3 Schauminbetriebnahme (mit Werkseinstellung)	
3 Parametrierung der Schaltausgänge	
3.1 Schalthysterese und Fensterfunktion	
3.2 Schließer mit einstellbarer Hysterese	
3.3 Öffner mit einstellbarer Hysterese	20
3.4 Schließer mit Fensterfunktion	21
3.5 Öffner mit Fensterfunktion	
3.6 Schließer mit Fehlersignal	
3.7 Öffner mit Fehlersignal	23
4 Parametrierung des Analogausgangs	24
4.1 Automatische Signalerkennung	24
4.2 Stromausgang 4-20 mA	24
4.3 Spannungsausgang 0-10 V	24
5 Envoitarta Euroktianan	25
5 Erweiterte Fullktionen	25
5.1 Expert Modus	20 25
5.2 Messwerte IIItern	20
5.4 Augusti des Augusteverfahrens	20∠
5.5 Testen der Deremetrierung	21 27
5.5 resten der Farannetnerung	
5.6 Parametrierung der Sondenlange	
5.7 Statische Storsignale einiernen	
5.8 Signaiqualitat auswerten	

5.9 Koaxialkabellänge editieren	
5.10 Displayschutz aktivieren	
5.11 Anzeigeeinheit auswählen (Millimeter/Inch)	30
5.12 Offset einstellen	31
5.13 Zurücksetzen der Kalibrierung	
6 Menü-Übersicht	32
7 Fehlerbehebung	40
7.1 Fehlermeldung am Display	40
7.2 Bedienung am Display	41
7.3 Ausgänge	42
7.4 Verhalten	42
8 Technische Daten	
8.1 Merkmale	
8.2 Performance	44
8.3 Referenzbedingungen	45
8.4 Messgenauigkeit	46
8.5 Mechanik/Werkstoffe	48
8.6 Elektrische Anschlusswerte	
8.7 Umgebungsbedingungen	
8.8 Maßzeichnungen	
8.9 Werkseinstellung	52
9 Bestelldaten	53
10 Wartung	53
11 Rücksendung	53
12 Entsorgung	
13 Mediumsliste	54
Anhang 1 Mediumslistež.	55
Anhang 2 Parametertabellež	61
14 IO-Link Herstellererklärung	65
15 EU-Konformitätserklärung	
16 UK Declaration of Conformance	67

Die Bedienungsanleitungen auf unserer Website <u>www.kobold.com</u> entsprechen immer dem aktuellen Fertigungsstand unserer Produkte. Die online verfügbaren Bedienungsanleitungen könnten bedingt durch technische Änderungen nicht immer dem technischen Stand des von Ihnen erworbenen Produkts entsprechen. Sollten Sie eine dem technischen Stand Ihres Produktes entsprechende Bedienungsanleitung benötigen, können Sie diese mit Angabe des zugehörigen Belegdatums und der Seriennummer bei uns kostenlos per E-Mail (<u>info.de@kobold.com</u>) im PDF-Format anfordern. Wunschgemäß kann Ihnen die Bedienungsanleitung auch per Post in Papierform gegen Berechnung der Portogebühren zugesandt werden.

1 NGR-Füllstandsensor

1.1 Funktionsprinzip

Der NGR verwendet die TDR-Technologie (TDR: Time Domain Reflectometry). Dabei handelt es sich um ein Verfahren zur Ermittlung von Laufzeiten elektromagnetischer Wellen. In der Elektronik des Sensors wird ein niedrigenergetischer, elektromagnetischer Impuls erzeugt, auf die Sonde eingekoppelt und entlang dieser Sonde geführt. Trifft dieser Impuls auf die Oberfläche der zu messenden Flüssigkeit, wird ein Teil des Impulses dort reflektiert und läuft an der Sonde entlang wieder zur Elektronik zurück, welche dann aus der Zeitdifferenz zwischen dem ausgesandten und dem empfangenen Impuls den Füllstand errechnet. Den Füllstand kann der Sensor als kontinuierlichen Messwert ausgeben (Analogausgang) sowie zwei bzw. vier frei positionierbare Schaltpunkte daraus ableiten (Schaltausgänge).

Darüber hinaus steht beim Schaltausgang (Q1) eine IO-Link-Kommunikation zur Verfügung, siehe 1.7 IO-Link.

1.2 Sicherheitshinweise

- Lesen Sie die Betriebsanleitung vor der Inbetriebnahme.
- Diese Betriebsanleitung gilt für Geräte ab Firmwareversion V5.00.
- Anschluss, Montage und Einstellung nur durch Fachpersonal.
- Der NGR ist kein Sicherheitsmodul gemäß EU-Maschinenrichtlinie.
- Beachten Sie die nationalen Sicherheits- und Unfallverhütungsvorschriften.
- Reparaturen dürfen nur vom Hersteller durchgeführt werden. Eingriffe und Änderungen am Gerät sind unzulässig.
- Verdrahtungsarbeiten, Öffnen und Schließen von elektrischen Verbindungen nur im spannungslosen Zustand durchführen.
- Die abgestrahlte Energie unterschreitet die von Telekommunikationseinrichtungen um ein Vielfaches. Nach dem aktuellen Stand der Wissenschaft kann der Betrieb des Gerätes als gesundheitlich unbedenklich eingestuft werden.
- Unsachgemäßer oder nicht bestimmungsgemäßer Gebrauch können zu Funktionsstörungen in Ihrer Applikation führen.

1.3 Einsatzbereiche

Die innovative TDR -Technologie ermöglicht eine zuverlässige und weitgehend anwendungsunabhängige Füllstandmessung. Der NGR ist sowohl zur kontinuierlichen Füllstandmessung als auch zur Grenzstanddetektion in nahezu allen Flüssigkeiten geeignet.

Änderungen in den Eigenschaften der zu messenden Flüssigkeit beeinflussen ihn nicht. Der NGR kann in metallische Behältern oder Bypass-/Tauchrohren eingesetzt werden. Für den Einsatz in Kunststoffbehälter ist ein Koaxialrohr zu verwenden.

1.4 Einbaubedingungen

Der NGR wird mittels seines Prozessanschlusses senkrecht von oben in den Behälter oder Bypass montiert. Der Füllstandsensor NGR verfügt über einen G ¾ oder ¾ "NPT Gewindeanschluss. Ein minimaler Stutzendurchmesser gemäß nachfolgender Grafik 1 und 3 ist dabei einzuhalten. Der NGR ist so einzubauen, dass nach der Montage genügend Abstand zu anderen Tankeinbauten (z. B. Zulaufrohre, andere Messgeräte), der Behälterwand oder zum Behälterboden besteht. Mindestabstände sind ebenfalls in der Grafik 1 und 3 beschrieben. Der NGR kann auch in einem metallischen Tauchrohr oder Bypass eingesetzt werden. Die Einbaubedingungen sind in der Grafik 2 dargestellt. Es ist darauf zu achten, dass zwischen Messgerät NGR und dem Tank/Bypass eine gute metallische Verbindung besteht. Beim Betrieb des Sensors dürfen die Grenzen für die Umgebungstemperatur nicht unter- oder überschritten werden. Das Einisolieren des Sensorgehäuses bei Tanks mit heißen Medien ist nicht erlaubt. Der Einbauort ist so zu wählen, dass der Sensor nicht direkt dem Befüllstrom ausgesetzt ist. Das Sensorgehäuse ist um 360° drehbar und somit kann der Kabelabgang frei eingestellt werden.

Einbau in einen Behälter

Hinweis: Die Abstände sind die Gleichen für den Sensor mit abgesetzter Elektronik.

Einbau in ein metallisches Tauchrohr oder metallischen Bypass

Grafik 2

Zentrieren: Je nach Sondenlänge sollte abhängig vom Durchmesser des Bypassrohres eine Zentrierung der Sonde vorgenommen werden, um einen Kontakt der Sonde zum Bypassrohr unter Schwingungen zu vermeiden. Dazu ist es notwendig ein oder zwei Zentrierstücke einzusetzen.

Grafik 3

Behälterschweißnähte können die Messgenauigkeit beeinflussen.

1.5 Elektrischer Anschluss

Der Sensor wird über eine fertig konfektionierte Leitungsdose mit M12 x 1-Steckverbinder, 5-/8-polig angeschlossen. Leitungsdose spannungsfrei auf den Sensor aufstecken und festschrauben. Leitung gemäß ihrer Funktion anschließen. Nach Anlegen der Versorgungsspannung führt der Sensor einen Selbsttest durch – im eingebauten Zustand ist nach abgeschlossenem Selbsttest (< 5 s) der Sensor betriebsbereit - das Display zeigt den aktuellen Messwert an.

① L⁺: Versorgungsspannung, braun

- 2 Q₄: Analog Strom-/Spannungsausgang, weiß
- ③ M: Masse, Bezugsmasse für Strom-/Spannungsausgang, blau
- ④ C/Q₁: Schaltausgang 1, PNP, IO Link-Kommunikation, schwarz
- (5) Q₂: Schaltausgang 2, PNP/NPN, grau

- ① L⁺: Versorgungsspannung
- 2 Q₂: Schaltausgang 2, PNP/NPN
- ③ M: Masse, Bezugsmasse für Strom-/Spannungsausgang

NGR

- ④ C/Q₁: Schaltausgang 1, PNP, IO Link-Kommunikation
- **(5)** Q₃: Schaltausgang 3, PNP/NPN
- 6 Q₄: Schaltausgang 4, PNP/NPN
- Q₄: Analog Strom-/Spannungsausgang
- 8 keine Funktion

Die Adernfarben bei 8-poligen Kabeln sind nicht einheitlich. Bitte beachten Sie immer die Anschlussbelegung des Sensors.

1.6 Display

Alle Längenangaben (in mm) im Menü beziehen sich auf das Sondenende bzw. bei einem Parame-trierten Offset (siehe "5.6 Parametrierung der Sondenlänge") auf den Tankboden. Das Menü wird durch bestätigen der SET-Taste für mindestens 3 Sekunden aufgerufen.

Variante mit zwei Schaltausgängen

Hinweis: Die Darstellung der Zustände der Schaltausgänge erfolgt mit der Einheit Millimeter durch Balkenanzeigen über dem Einheitensymbol. Diese Darstellung ist bei der Einheit Inch nicht möglich.

Variante mit vier Schaltausgängen

Pfeil-Tasten:	
Set-Taste:	
Esc-Taste:	

NGR

zum Navigieren im Menü und um Werte zu verändern zum Speichern und Bestätigen zum schrittweise Verlassen des Bedienmenüs

1.7 IO-Link

Die IO-Link Parametertabelle für NGR-Gerät ist im Anhang 2 zu finden. Damit das IO-Link Gerät korrekt am angeschlossenen IO-Link Master betrieben werden kann, ist es notwendig, die zum Gerät passende Gerätebeschreibungsdatei zu installieren. Die Gerätebeschreibungsdateien (IODD) sind im IODDfinder, ioddfinder.io-link.com verfügbar. Weitergehende Information zu IO-Link stehen auf der Homepage www.io-link.com zur Verfügung.

1.8 Montage Koaxialrohr

Bei einer Nachbestellung Koaxialrohr: Abstandshalter auf die Stabsonde schieben, (erster. ca. 500 mm vom Gewinde G3/4, dann folgend alle 500mm) und auf beiden Seiten der benötigten Abstandhalter mit dem Körner 2-3 Ankörnungen auf der Stabsonde anbringen. Die Abstandshalter aber nicht über die Ankörnungen ziehen. Durch die Ankörnungen wird verhindert, das der Abstandshalter sich in

Längsrichtungen verschieben kann.

1. Befestigen der Abstandshalter auf dem Sondenstab

1.9 Sondenstab/Seilsonde kürzen oder tauschen

Sollte die Stabsonde oder Seilsonde* für den Einsatz zu lang sein, so kann diese auf die Behälterhöhe gekürzt werden. Das Mindestmaß der Sondenlänge von 100 mm darf hierbei nicht unterschritten werden.

Ablauf: Stabsonde bzw. Seilsonde* um das gewünschte Maß kürzen. Bitte die neue Sondenlänge wie in Kapitel "5.6 Parametrierung der Sondenlänge" beschrieben im NGR einstellen. Bitte stellen Sie sicher, dass diese Korrektur der Sondenlänge entspricht, da ein falscher Wert im Menü *Length* sich direkt auf die Messgenauigkeit auswirkt und zu Störungen führen kann. Beim NGR kann der Sondenstab bzw. die Seilsonde* getauscht werden. Bitte verwenden sie geeignetes Werkzeug. Bei starken Anlagenvibrationen ist die Sonde mit Schraubensicherungslack zu sichern.

Betriebsanleitung

Kürzen der Seilsonde

** Es wird empfohlen die Gewindestifte mit Schraubensicherungslack zu sichern

1.10 Sondenstab montieren

Beim NGR lässt sich ein Sondenstab kundenseitig adaptieren. Der Sondenstab muss wie folgt ausgeführt sein:

- Sondenstabdurchmesser: 7 mm ... 8 mm
- Innengewinde am Sondenstab: M5
- Länge Innengewinde: min. 10 mm
- Werkstoff: Edelstahl

- Gesamt-Sondenlänge: 100 mm ... 4.000 mm
- Gesamt-Sondenlänge = 15 mm + Länge Sondenstab

Die Gesamt-Sondenlänge wie in Kapitel "5.6 Parametrierung der Sondenlänge" einstellen. Das Menü *EXPRT-Config-Length* ist passwortgeschützt. Bei starken Anlagenvibrationen ist die Sonde mit Schraubensicherungslack zu sichern.

2 Inbetriebnahme des NGR

2.1 Kurzinbetriebnahme (mit Werkseinstellung)

Die Kurzinbetriebnahme kommt bei Anwendungen unter Referenzbedingungen zum Einsatz (siehe Kapitel 1.4 "Einbaubedingungen").

Dabei gilt:

- Einsatz in metallischen Behältern oder Tauch-/Bypassrohren
- Einsatz im Kunststofftank mit Verwendung eines Koaxialrohrs
- Die zumessende Flüssigkeit hat einen DK-Wert > 5 (siehe Kapitel 13 "Mediumsliste")

Inbetriebnahme

1. Montage des Sensors gemäß den Einbaubedingungen durchführen (siehe Kapitel 1.4 "Einbaubedingungen" und 1.7 "Montage Koaxialrohr").

2. Der Behälter muss leer sein bzw. der Füllstand muss sich unterhalb des Sondenendes befinden (siehe Einbau in einen Behälter Seite 5)

(siehe Einbau in einen Behälter Seite 5).

- 3. Experten-Modus anmelden, siehe 5.1 Expert-Modus.
- 4. Nach der Montage den Menüpunkt AutCal ausführen.
 - Set-Taste länger als 3 s gedrückt halten.
 - Den Menüpunkt AutCal mit der Set-Taste bestätigen und die Sicherheitsabfrage Ok? ebenfalls mit der Set-Taste bestätigen.
 - Die AutCal-Funktion wird mit !CalOk bestätigt.

5. Ausgänge parametrieren (siehe Kapitel 3 "Parametrierung der Schaltausgänge" und Kapitel 4 "Parametrierung des Analogausgangs").

Hinweise: Wurde die *AutCal*-Funktion mit *!NoSig* bestätigt, *AutCal* erneut ausführen. Bei Problemen siehe Kapitel 7 "Fehlerbehebung".

2.2 Erweiterte Inbetriebnahme

Die erweiterte Inbetriebnahme ist notwendig, wenn die Kurzinbetriebnahme nicht ausreicht oder einer der folgenden Punkte zutrifft:

- Die zumessende Flüssigkeit hat einen DK-Wert < 5 (siehe Kapitel 13 "Mediumsliste")</p>
- Es existieren Tankeinbauten, welche das Messsignal stören können
- Bei starker Wellenbildung an der Flüssigkeitsoberfläche
- Wenn abweichende Einbaubedingungen vorhanden sind (siehe Kapitel 1.4 "Einbaubedingungen")

Inbetriebnahme

1. Montage des Sensors gemäß den Einbaubedingungen (siehe Kapitel 1.4 "Einbaubedingungen" und 1.7 "Montage Koaxialrohr")

2. Experten-Modus anmelden (siehe Kapitel "5.1 Expert Modus")

- 3. Messmodus auswählen
 - Menü EXPRT-CONFIG-MeasMd mit den Pfeil-Tasten und Set-Taste aufrufen
 - HiSpd: max. Length = 2.005 mm, Ansprechzeit < 400 ms
 - HiAcc: max. Length = 6.005 mm, Ansprechzeit < 2.800 ms, stabilere Messwerte, empfohlen bei Flüssigkeiten mit kleinen DKs und bei TrsHld < 70
- 4. Statische Störer im Tank
 - Statische Störer im Tank erzeugt von Rohren, Streben, Stutzen oder einer Reinigungskugel werden standardmäßig eingelernt.
 - Menü EXPRT-CONFIG-CalRng mit den Pfeil-Tasten und Set-Taste aufrufen.
 - Dabei gilt:
 - Einlerntiefe beginnend ab Prozessanschluss des NGR
 - Die Einlerntiefe sollte alle Störsignale abdecken
 - Die maximale Einlerntiefe (empfohlen) = Sondenlänge
 - ° Wertebereich: 95 ... 6.005 mm einstellen
 - Kann der Tank nicht vollständig geleert werden, muss die Einlerntiefe CalRng entsprechend angepasst werden.
 - Der Füllstand muss sich mindestens 200 mm unterhalb des CalLen und/oder des Sondenendes befinden.
- 5. AutCal-Funktion ausführen
 - Menü AutCal mit den Pfeil-Tasten und Set-Taste aufrufen.
 - Dabei gilt: Die Sonde darf in der unter Punkt 4 eingestellten CalRng (Einlerntiefe + 200 mm) nicht mit Flüssigkeit bedeckt sein.
 - Den Menüpunkt *AutCal* mit der Set-Taste bestätigen und die Sicherheitsabfrage *Ok*? ebenfalls mit der Set-Taste bestätigen.
 - Die AutCal-Funktion wird mit !CalOk bestätigt.
- 6. Signalqualität analysieren
 - Die Signalqualität lässt sich im eingebauten Zustand analysieren ("5.8 Signalqualität auswerten")
 - O Bei Problemen:
 - Wert im Menü EXPRT-CONFIG-TrsHld reduzieren
 - Parameter im Menü EXPRT-CONFIG-MeasMd auf HiAcc setzen
 - · Filter einschalten im Menü Filter einstellen
 - Parameter im Menü EXPRT-CONFIG-MaxCol reduzieren
- 7. Filter parametrieren (siehe Kapitel "5.2 Messwerte filtern")
- 8. Maximum change of level/Plausibilitätsprüfung (siehe Kapitel "5.2 Messwerte filtern")

9. Ausgänge parametrieren (siehe Kapitel 3 "Parametrierung der Schaltausgänge" und "4 Parametrierung des Analogausgangs")

Hinweise

- Bei Applikation mit Schaum bitte die Schauminbetriebnahme verwenden.
- Der Sensor beendet den Experten-Modus nach 5 Minuten Inaktivität am Display automatisch.
- Die Parametrierung (AutCal) verfällt bei folgenden Vorgängen:
 - ändern der Sondenlänge
 - ändern des Messmodus
 - ändern der Einlerntiefe

Bei Problemen siehe Kapitel 7 "Fehlerbehebung".

2.3 Schauminbetriebnahme (mit Werkseinstellung)

Zu verwenden bei Applikationen mit starker Schaumbildung.

Schaumkalibrierung durchführen

- 1. Montage des Sensors gemäß den Einbaubedingungen, siehe "1.4 Einbaubedingungen".
- 2. Experten-Modus anmelden, siehe "5.1 Expert-Modus".
- 3. Tank vollständig entleeren.
 - Die Stabsonde darf nicht mehr mit Medium und Schaum benetzt sein.
 - Anhaftungen an der Sonde müssen entfernt werden.
 - Das Sondenende darf nicht am Tankboden fixiert sein.
- 4. Messmodus auswählen.
 - Menü EXPRT-Config-MeasMd mit den Pfeil-Tasten und Set-Taste aufrufen und auf HiAcc parametrieren.
- 5. Modus auswählen Menü EXPRT-Config-Mode mit den Pfeil-Tasten und Set-Taste aufrufen und auf Foam parametrieren.
- 6. Leerkalibration ausführen.
 - Menü EXPRT-Foam-CalEmp mit den Pfeil-Tasten und Set-Taste aufrufen.
 - !CalOk: Weiter mit Punkt 7.
 - !faild: Sicherstellen, dass der Tank leer ist und Punkt 6 wiederholen.
- 7. Medium einfüllen (ohne Schaum) bis die Sonde mindestens 200 mm bedeckt ist. Der maximale Füllstand muss allerdings 200 mm vom Prozessanschluss entfernt sein.
- 8. EXPRT-Foam-CalMed ausführen.
 - !CalOk: Alles hat funktioniert, weiter mit Punkt 9.
 - !faild: Punkt 8 erneut ausführen.

Das Display muss jetzt einen gültigen Messwert anzeigen.

- 9. Überprüfen der Schaumkalibrierung im EXPRT-INFO-CalSta.
 - FomCal: Schauminbetriebnahme wurde erfolgreich durchgeführt.
 - CalMis: Fehlerhafte Inbetriebnahme. Bitte erneut ausführen.

Hinweise

- Messabweichung kann höher sein
- Signal-Qualität 1 & 2 werden nicht berechnet!
- Der Sensor beendet den Experten-Modus nach 5 Minuten Inaktivität am Display automatisch.
- Die Parametrierung (Schaum-Teach) verfällt bei folgenden Vorgängen:
 - o ändern der Sondenlänge
 - ändern des Messmodus
 - o ändern der Einlerntiefe
 - ausführen von AutCal

Bei Problemen siehe Kapitel 7 "Fehlerbehebung".

3 Parametrierung der Schaltausgänge

3.1 Schalthysterese und Fensterfunktion

Je nach Variante 2 oder 4 Ausgänge

Je nach Variante 2 oder 4 Ausgänge

3.2 Schließer mit einstellbarer Hysterese

Anwendungen

- Trockenlaufschutz
- Leermeldung

Parametrierung

- Schaltausgang Qx als Schließer parametrieren
 - Parameter im Menü QxMENU-OUx auf Qx_Hno setzen
- Schaltpunkt setzen
 - Wert im Menü QxMENU-SPx auf Füllstandshöhe in mm setzen (bspw. 500 mm)
- Rücksetzpunkt setzen
 - Wert im Menü QxMENU-RPx auf Füllstandshöhe in mm setzen (bspw. 450 mm)
- Elektrische Eigenschaft auswählen (NPN / PNP / DRV (Push-Pull))
 - Parameter im Menü QxMENU-TYPx auswählen
 - Dabei gilt:
 - Qx-PNP = Schaltausgang in PNP Schaltung
 - Qx-NPN = Schaltausgang in NPN Schaltung
 - Qx-Drv = Schaltausgang in Push-Pull-Funktion
- Verhalten des Schaltausgangs

Schaltausgang		PNP	NPN	DRV	Zustand bei Fehler
Schließer / HNO	aktiv	Uv	0 V	Uv (PNP geschaltet)	in a latin
	inaktiv	0 V 1)	Uv ²⁾	0 V (NPN geschaltet)	Inaktiv

¹⁾Nur Pulldown.

3.3 Öffner mit einstellbarer Hysterese

Anwendungen

- Überfüllsicherung
- Vollmeldung

Parametrierung

- Schaltausgang Qx als Öffner parametrieren
 - Parameter im Menü QxMENU-OUx auf Qx_Hnc setzen
- Schaltpunkt setzen
 - Wert im Menü QxMENU-SPx auf Füllstandshöhe in mm setzen (bspw. 500 mm)
- Rücksetzpunkt setzen
 - Wert im Menü QxMENU-RPx auf Füllstandshöhe in mm setzen (bspw. 450 mm)
- Elektrische Eigenschaft auswählen (NPN / PNP / DRV (Push-Pull))
 - Parameter im Menü QxMENU-TYPx auswählen
 - Dabei gilt:
 - Qx-PNP = Schaltausgang in PNP Schaltung
 - Qx-NPN = Schaltausgang in NPN Schaltung
 - Qx-Drv = Schaltausgang in Push-Pull-Funktion

Verhalten des Schaltausgangs

Schaltausgang		PNP	NPN	DRV	Zustand bei Fehler
Öffner / HNC	aktiv	Uv	0 V	Uv (PNP geschalten)	in a latin
	inaktiv	0 V 1)	Uv ²⁾	0 V (NPN geschalten)	Inaktiv

¹⁾ Nur Pulldown.

3.4 Schließer mit Fensterfunktion

Anwendung

NGR

Die für die Anwendung kritische Füllhöhe liegt innerhalb der Fensterschwellen FHx und FLx.

Parametrierung

- Schaltausgang Qx als Schließer parametrieren
 - Parameter im Menü QxMENU-OUx auf Qx_Fno setzen
- Schaltpunkt setzen
 - Wert im Menü QxMENU-FHx auf Füllstandshöhe in mm setzen (bspw. 500 mm)
- Rücksetzpunkt setzen
 - Wert im Menü QxMENU-FLx auf Füllstandshöhe in mm setzen (bspw. 400 mm)
- Elektrische Eigenschaft auswählen (NPN / PNP / DRV (Push-Pull))
 - Parameter im Menü QxMENU-TYPx auswählen
 - Dabei gilt:
 - Qx-PNP = Schaltausgang in PNP Schaltung
 - Qx-NPN = Schaltausgang in NPN Schaltung
 - Qx-Drv = Schaltausgang in Push-Pull-Funktion

Verhalten des Schaltausgangs

Schaltausgang		PNP	NPN	DRV	Zustand bei Fehler
Schließer / FNO	aktiv	Uv	0 V	Uv (PNP geschaltet)	in altitu
	inaktiv	0 V ¹⁾	Uv ²⁾	0 V (NPN geschaltet)	Inaktiv

¹⁾Nur Pulldown.

3.5 Öffner mit Fensterfunktion

Anwendung

Die für die Anwendung kritische Füllhöhe liegt außerhalb der Fensterschwellen FHx und FLx.

Parametrierung

- Schaltausgang Qx als Öffner parametrieren
 - Parameter im Menü QxMENU-OUx auf Qx_Fnc setzen
- Schaltpunkt setzen
 - Wert im Menü QxMENU-FHx auf Füllstandshöhe in mm setzen (bspw. 500 mm)
- Rücksetzpunkt setzen
 - Wert im Menü QxMENU-FLx auf Füllstandshöhe in mm setzen (bspw. 400 mm)
- Elektrische Eigenschaft auswählen (NPN / PNP / DRV (Push-Pull))
 - Parameter im Menü QxMENU-TYPx auswählen
 - Dabei gilt:
 - Qx-PNP = Schaltausgang in PNP Schaltung
 - Qx-NPN = Schaltausgang in NPN Schaltung
 - Qx-Drv = Schaltausgang in Push-Pull-Funktion

Verhalten des Schaltausgangs

Schaltausgang		PNP	NPN	DRV	Zustand bei Fehler
Öffner / FNC	aktiv	Uv	ΟV	Uv (PNP geschalten)	inclutiv
	inaktiv	0 V 1)	Uv ²⁾	0 V (NPN geschalten)	Inakuv

¹⁾ Nur Pulldown.

3.6 Schließer mit Fehlersignal

Anwendung

Wenn am NGR eine Fehlermeldung ansteht, kann diese mit einem Schaltkontakt übertragen werden.

Parametrierung

- Schaltausgang Qx als Schließer parametrieren
 - Parameter im Menü QxMENU-OUx auf Qx_Eno setzen
- Elektrische Eigenschaft auswählen (NPN / PNP / DRV (Push-Pull))
 - Parameter im Menü QxMENU-TYPx auswählen
 - Dabei gilt:
 - Qx-PNP = Schaltausgang in PNP Schaltung
 - Qx-NPN = Schaltausgang in NPN Schaltung
 - Qx-Drv = Schaltausgang in Push-Pull-Funktion

3.7 Öffner mit Fehlersignal

Anwendung

Wenn am NGR eine Fehlermeldung ansteht, kann diese mit einem Schaltkontakt übertragen werden.

Parametrierung

- Schaltausgang Qx als Öffner parametrieren
 - Parameter im Menü QxMENU-OUx auf Qx_Enc setzen
- Elektrische Eigenschaft auswählen (NPN / PNP / DRV (Push-Pull))
 - Parameter im Menü QxMENU-TYPx auswählen
 - Dabei gilt:
 - Qx-PNP = Schaltausgang in PNP Schaltung
 - Qx-NPN = Schaltausgang in NPN Schaltung
 - Qx-Drv = Schaltausgang in Push-Pull-Funktion

4 Parametrierung des Analogausgangs

4.1 Automatische Signalerkennung

Der NGR kann selbständig anhand der angeschlossenen Ausgangslast (siehe Kapitel 8 "Technische Daten") erkennen, welches Signal gefordert wird. Dabei gilt:

- 4 mA ... 20 mA < 500 0hm bei Uv > 15 V
- 4 mA ... 20 mA < 350 Ohm bei Uv > 12 V
- 0 V ... 10 V > 750 Ohm bei Uv ≥ 14 V

Parametrierung

- Menü QAMENU-TYP mit den Pfeil-Tasten und Set-Taste aufrufen.
- Menü QAMENU-TYP auf Auto? setzen
- Hinweis: Die automatische Signalerkennung ist nur beim erstmaligen Einschalten aktiv. Danach kann diese Funktion im Menü QAMENU-Typ wieder mit Auto? aktiviert werden.

4.2 Stromausgang 4-20 mA

Parametrierung

- Obere Grenzwert (20 mA) setzen
 - Wert im Menü QAMENU-QAHIGH auf Füllstandshöhe in mm setzen (bspw. 500 mm)
- Unterer Grenzwert (4 mA) setzen
 Wert im Menü *QAMENU-QALOW* auf Füllstandshöhe in mm setzen (bspw. 10 mm)
- Signal invertieren
 - Im Menü QAPOL kann das Analogsignal invertiert werden
 - Parameter im Menü QxMENU-QAPOL auf QA-INV setzen
 - QA-NRM = Analoges Ausgangssignal wie parametriert
 - QA-INV = Analoges Ausgangssignal wird invertiert; QAHIGH 4 mA und QALOW 20 mA
- Elektrisches Signal auswählen
 - Parameter im Menü QxMENU-QATYP auf 4-20 mA setzen

4.3 Spannungsausgang 0-10 V

Parametrierung

- Oberer Grenzwert (10 V) setzen
 - Wert im Menü QAMENU-QAHIGH auf Füllstandshöhe in mm setzen (bspw. 500 mm)
- Unterer Grenzwert (0 V) setzen
 - Wert im Menü QAMENU-QALOW auf Füllstandshöhe in mm setzen (bspw. 10 mm)
- Signal invertieren
 - Im Menü QAPOL kann das Analogsignal invertiert werden
 - Parameter im Menü QxMENU-QAPOL auf QA-INV setzen
 - QA-NRM = Analoges Ausgangssignal wie parametriert
 - QA-INV = Analoges Ausgangssignal wird invertiert; QAHIGH OV und QALOW 10V
- Elektrisches Signal auswählen
 - Parameter im Menü QxMENU-QATYP auf 0-10 V setzen

5 Erweiterte Funktionen

5.1 Expert Modus

Um spezielle Funktionen zu aktivieren, muss zunächst der Expert-Modus eingestellt werden.

Experten-Modus anmelden

O Menü PASSW mit den Pfeil-Tasten aufrufen

 \circ Passwort 000537 (NGR auf der Handytastatur / L=5 / F=3 / P=7) eingeben. Mit einem falschen Passwort oder durch spannungslos schalten kann der Experten-Modus wieder verriegelt werden.

5.2 Messwerte filtern

Filterung aktivieren

- Glättung des Messwertes z.B bei welligen Füllstandsoberflächen. Bei schnellen Füllstandsänderungen wird der Durchschnitt der Messwerte über X Sekunden ausgegeben.
- Parameter im Menü Filter einstellen
- Mögliche Werte sind Off, 400 ms, 600 ms, 1.000 ms, 1.400 ms, 2 s, 5 s, 10 s

Maximum change of level (Plausibilitätsprüfung)

- Bei Anwendungen, die durch starke Störeinflüsse am NGR Füllstandssprünge verursachen. Eingabe der max. Füllstandsdynamik in der Anwendung bzw. die maximal zulässige Änderungsrate des Füllstands.
- Experten-Modus anmelden (siehe Kapitel "5.1 Expert Modus")
- Parameter im Menü EXPRT-CONFIG-MaxCol reduzieren.
- AnySpd (50 cm/s) (default), 10 cm/s, 5 cm/s, 2 cm/s
- Hinweis:
 - MeasMd = HiSpd alle max. Änderungsrate möglich
 - MeasMd = HiAcc max. 10 cm/s

5.3 Automatische Einstellung der Störsignalgrenze

Automatische Einstellung der Störsignalgrenze

Die Einstellung der Störsignalgrenze (TrsHld) kann in vielen Anwendungen automatisiert vorgenommen werden.

Parametrieren

- 1. Füllstand von 30 % einstellen.
- 2. Experten-Modus anmelden, siehe "5.1 Expert-Modus".
- 3. Im Menü EXPRT-Pulse-AutoTn ausführen.

Der Sensor ermittelt einen geeigneten Wert für TrsHld.

Hinweis:

Diese Einstellung kann nur im Puls-Modus verwendet werden.

Ausblenden von Störsignalen in maskierter Zone

Um Störsignale aus dem Bereich oberhalb des maximal zu erwartenden Füllstands auszublenden, kann eine Zone maskiert werden (Totzone). Diese Zone beginnt am Prozessanschluss und erstreckt sich bis zum parametrierten Punkt. Treten innerhalb dieses Bereichs Signalwerte oberhalb des festgelegten Grenzwerts (TrsHId) auf, geht der Sensor in den sicheren Zustand und der Sensor signalisiert den Fehler !MaskZ.

MaskTr	1			2)	3	
	DZ	MR	DZ	MR	DZ	MR
20 %	х	\odot	\odot	х	\odot	х
100 %	х	\bigcirc	х	\bigcirc	\bigcirc	х
200 %	х	\odot	х	\odot	х	\odot

- ① Keine/sehr schwache Reflexion
- ② Schwache Reflexion (z. B. Spritzwasser)
- ③ Starke Reflexion (z. B. dicke Schicht Ketchup) DZ

Totzone

- MR Aktiver Messbereich
- x Keine Detektion/ Messung
- Detektion/ Messung

Parametrierung

- 1. Experten-Modus anmelden, siehe "5.1 Expert-Modus".
- 2. Parameter im Menü EXPRT-Pulse-MaskZn festlegen.

Hinweis:

Diese Einstellung kann nur im Pulse-Modus verwendet werden.

5.4 Auswahl des Auswerteverfahrens

Auswahl des Auswerteverfahrens

Als Auswerteverfahren kann zwischen Puls-Modus und Schaum-Modus umgeschaltet werden. Je nach gewähltem Modus werden andere Auswertealgorithmen verwendet.

Parametrierung

- 1. Experten-Modus anmelden, siehe "5.1 Expert-Modus".
- 2. Im Menü EXPRT-Config-Mode zwischen Pulse und Foam wählen.

Dabei gilt:

- Mode = Pulse: Der Sensor misst entweder mit oder ohne AutCal.
- Mode = Foam: Der Sensor misst nur mit g
 ültigem CalEmp+CalMed. Liegen keine g
 ültigen Kalibrierungen vor, wird die Meldung CalPIs angezeigt und der Sensor geht in den sicheren Zustand.

Hinweis:

Wenn AutCal aufgerufen wird, während sich der Sensor im Modus Foam befindet, wird AutCal mit der Fehlermeldung !Denid abgelehnt.

5.5 Testen der Parametrierung

Ausgänge testen

Schalt-/Analogausgang können simuliert werden. Dadurch können die Verdrahtung und die Signalwerte an die angeschlossenen Systeme, wie SPS Steuerung, Relais, Lampen überprüft werden.

Parametrierung

- Schaltausgang Qx aktiv setzen
 - Parameter im Menü QxMENU-SimQx auf QxOn setzen
 - Weitere Optionen
 - QxOff = Schaltausgang aus
 - QxNorm = Schaltausgang im Messbetrieb
 - QxOn = Schaltausgang ist aktiv
- Hinweis: Die Simulation wird automatisch abgeschaltet, wenn die Versorgungsspannung unterbrochen wird.

27

- Analogausgang QA aktiv setzen
 - Parameter im Menü QAMENU-SimCur oder SimVol auf gewünschen Signalwert setzen.
 - SimCur f
 ür Stromausgang
 - SimVol f
 ür Spannungsausgang
- Hinweis: Die Simulation wird automatisch abgeschaltet, wenn die Versorgungsspannung unterbrochen wird.

Füllstand simulieren

Auch wenn sich im Behälter noch keine Flüssigkeit befindet, kann im Menü eine Füllhöhe gewählt werden, um die Parametrierung des Sensor zu testen. Wenn ein Füllstandswert simuliert wird, dann werden am NGR alle Ausgänge gemäß der festgelegten Parametrierung gesetzt. Die Funktion sollte erst am Ende einer Parametrierung gewählt werden.

Parametrierung

- Parameter im Menü SimLev auf gewünschte Füllhöhe in % setzen
- Hinweis:
 - Simulation des Füllstands bezieht sich auf die Sondenlänge bzw. auf den Behälterfüllstand (Sondenlänge + Offset) bei Parametriertem Offset (siehe Kapitel 5.12 "Offset einstellen")
 - Die Simulation ist nur aktiv, wenn keine Fehlermeldungen anstehen. Die Simulation wird automatisch abgeschaltet, wenn die Versorgungsspannung unterbrochen wird.
- Parameterauswahl
 - SimOff: Aus
 - 0 % Füllhöhe
 - 25 % Füllhöhe
 - 50 % Füllhöhe
 - 75 % Füllhöhe
 - 100 % Füllhöhe

5.6 Parametrierung der Sondenlänge

- Experten-Modus anmelden (siehe Kapitel "5.1 Expert Modus")
- Menü EXPRT-CONFIG-Length mit den Pfeil-Tasten und Set-Taste aufrufen
- Sondenlänge im Menü Length eingeben. Bitte die Definition der Sondenlänge in Kapitel 8.8 "Maßzeichnungen" beachten.
- Hinweis:
 - HiSpd: max. Length = 2.005 mm, Ansprechzeit < 400 ms
 - HiAcc: max. Length = 6.005 mm, Ansprechzeit < 2.800 ms

5.7 Statische Störsignale einlernen

- Statische Störsignale im Tank erzeugt von Rohren, Streben, Stutzen oder einer Reinigungskugel können eingelernt werden. Dabei ist die Sondelänge der Wert für die Einlerntiefe.
- Experten-Modus anmelden (siehe Kapitel "5.1 Expert Modus")
- Menü *EXPRT-Config-CalRng* mit den Pfeil-Tasten und Set-Taste aufrufen.
- Wertebereich: 95 ... 6.005 mm einstellen

- Hinweis:
 - $^\circ \text{Wert}$ beginnend ab Prozessanschluss des NGR
 - $^{\odot}$ Der Wert sollte alle Störsignale abdecken
 - Maximaler Wert = Sondenlänge 100 mm
 - AutCal-Funktion muss danach ausgeführt werden (siehe Kapitel 2 "Inbetriebnahme des NGR")
 - Der Parameter CalRng sollte bei NGR mit abgesetzter Elektronik* immer der Sondenlänge entsprechen

5.8 Signalqualität auswerten

Parameter beschreiben die Qualität des Messsignals.

Experten-Modus anmelden (siehe Kapitel "5.1 Expert Modus")

SigQa1

- Kennzahl für Robustheit der EXPRT-Config-TrsHld-Einstellung
- Bei Schaummodus nicht aktiv. Der angezeigte Wert ist nur gültig, sofern der Sensor den korrekten Füllstandswert anzeigt.
 - $^\circ~$ Wertebereich 0 ... 100 %~
 - Gutes Signal: > 40 % (Mit der aktuellen *TrsHld*-Einstellung ist eine hohe Pulsreserve gegeben.)
- Maßnahmen: *EXPRT-Config-TrsHld* reduzieren, dadurch wird SigQa1 erhöht.
- Hinweis:
 - Eine Veränderung von TrsHld hat Auswirkungen auf SigQa2 und SigQa3.
 - Sofern sich in Verbindung mit den SigQa-Werten durch Anpassung von TrsHld kein zufriedenstellender Wert für SigQa1 erzielen lässt, ist die Einbaubedingung zu überprüfen. Der Einsatz eines Koaxialrohrs verbessert die Signaldetektion insbesondere bei Medien mit kleinen DK-Werten (z.B. Öl).

SigQa2

- Kennzahl für Robustheit der Echopulserkennung bzgl. Störpulsen
- Bei Schaummodus nicht aktiv. Der angezeigte Wert ist nur gültig, sofern der Sensor den korrekten Füllstandswert anzeigt.
 - Wertebereich: 0 ... 100 %
 - Gutes Signal: > 50 %
- Maßnahmen: AutCal ausführen; Einbaubedingungen überprüfen; Anhaftungen an Sonde und Prozessanschluss entfernen

SigQa3

- Kennzahl f
 ür Rauschen und elektromagnetische Störer
 - $\circ~$ Wertebereich 0 ... 100 %~
 - Gutes Signal: > 75 %
 - Schlechtes Signal: < 50 %
- Bei Schaummodus nicht aktiv. Der angezeigte Wert ist nur gültig, sofern der Sensor den korrekten Füllstandswert anzeigt.
 - $^\circ~$ Wertebereich: 0 ... 100 %~
- Maßnahmen:
 - EXPRT-Config-TrsHld erhöhen
 - EXPRT-Config-MeasMd = HiAcc
 - Filterung verbessern
 - Filter einschalten
 - EXPRT-Config-MaxCol reduzieren

5.9 Koaxialkabellänge editieren

- Es ist gültig für Versionen mit abgesetzter Elektronik.
- Diese Einstellung ermöglicht es, die Koaxialkabellänge zwischen Sensorkopf und Prozessanschluss zu parametrieren.

Parametrierung

- Vordefinierten Koaxialkabellänge (1.000 mm, 2.000 mm oder 3.300 mm)
- Expertenmodus anmelden (siehe Kapitel "5.1 Expert Modus")
- Koaxialkabellänge parametrieren im Menü EXPRT-Config-CblLen (1.000 ... 3.300 mm)

Hinweis:

Es ist nur folgende Parametrierung zugelassen:

	Max. Sondenlänge [mm]		
Koaxialkabellänge [mm]	Schaum Modus Inaktive	Schaum Modus Aktiv	
1.000	4.000	2.000	
2.000	3.000	1.500	
3.300	1.000	500	

5.10 Displayschutz aktivieren

- Um den Sensor gegen Manipulation zu schützen ist es möglich, einen Passwortschutz für das Display zu aktivieren.
- Ist der Schutz aktiv, dann muss vor dem betreten des Menüs das Experten-Passwort 000537 eingegeben werden.
- Nur nach Eingabe des korrekten Passworts wird das Menü freigegeben.

Parametrierung

- Expertenmodus anmelden (siehe Kapitel "5.1 Expert Modus")
- Der Schutz wird über Menü EXPRT-Config-Lock (de)aktiviert.

Hinweis:

- Der Anwender wird nach 5 Minuten Inaktivität wieder ausgeloggt.
- Im gesperrten Zustand ist lediglich die parametrierte Messwertanzeige (DspVal) sichtbar

5.11 Anzeigeeinheit auswählen (Millimeter/Inch)

Diese Einstellung ermöglicht es, alle Längenmaße in der Einheit Millimeter oder Inch darzustellen und zu parametrieren.

Parametrierung

- Experten-Modus anmelden (siehe Kapitel "5.1 Expert Modus")
- Einheit im Menü EXPRT-Config-Unit einstellen (mm/inch)

5.12 Offset einstellen

Diese Einstellung ermöglicht es, den Füllstandswert am Display bezogen auf den Tankboden anstelle des Sondenendes auszugeben. Damit kann der tatsächliche Behälterfüllstand am Display ausgegeben werden.

Parametrierung

- Experten-Modus anmelden (siehe Kapitel "5.1 Expert Modus")
- Offset im Menü EXPRT-Config-Offset einstellen (0 ... 3.000 mm)
- Siehe folgende Grafik

Hinweis:

Wird der Parameter Offset geändert, dann werden automatisch die Parameter SPx/RPx/FLx/FHx/ QALOW/QAHIGH angepasst.

5.13 Zurücksetzen der Kalibrierung

AutCal zurücksetzen

- 1. Experten-Modus anmelden, siehe "5.1 Expert-Modus".
- 2. AutCal im Menü EXPRT-Pulse-Reset zurücksetzen.

CalEmp+CalMed zurücksetzen

- 1. Experten-Modus anmelden, siehe "5.1 Expert-Modus".
- 2. CalEmp+CalMed im Menü EXPRT-Foam-Reset zurücksetzen.

6 Menü-Übersicht

Fortführung der Menü-Übersicht auf Seite 33.

Anmerkung: Q3 und Q4 sind nur vorhanden, wenn es sich um einen NGR mit vier Schaltausgängen handelt. 1) Sichtbare Elemente hängen von der OUx Parameter Wahl ab

D

Parameter	Beschreibung
Q1MENU, Q2MENU, Q3MENU, Q4MENU	Siehe Kapitel 3 "Parametrierung der Schaltausgänge"
SPx	Schaltpunkt Schaltausgang 1 oder 2 oder 3 oder 4 (SPx > RPx) Hinweis: Erscheint nicht mehr, wenn der Schaltausgang im Menü OUx auf Error oder Fenster gestellt ist.
RPx	Rückschaltpunkt Schaltausgang 1 oder 2 oder 3 oder 4 Hinweis: Erscheint nicht mehr, wenn der Schaltausgang im Menü OU2/3/4 auf Error oder Fenster gestellt ist.
FHx FLx	 Fensterfunktion obere Schwelle (high) Schaltausgang 2/3/4 (FHx > FLx) Fensterfunktion untere Schwelle (low) Schaltausgang 2/3/4 Hinweis: Erscheint nicht mehr, wenn der Schaltausgang im Menü OU2/3/4 auf Error oder Hysterese gestellt ist.
OUx	 Schaltfunktion Schaltausgang Qx-Hno = Hysteresefunktion, Schließer Qx-Hnc = Hysteresefunktion, Öffner Qx-Fno = Fensterfunktion, Schließer (Funktion nur für Q2/3/4 verfügbar) Qx-Fnc = Fensterfunktion, Öffner (Funktion nur für Q2/3/4 verfügbar) Qx-Eno = Fehlersignal, Schließer (Funktion nur für Q2/3/4 verfügbar) Qx-Enc = Fehlersignal, Öffner (Funktion nur für Q2/3/4 verfügbar) Qx-Enc = Fehlersignal, Öffner (Funktion nur für Q2/3/4 verfügbar) Wird Qx als Fehlersignal verwendet, so wird SPx/FHx und RPx/FLx im Menü ausgeblendet.
SimQx	Siehe Kapitel 5.3 "Testen der Parametrierung"
TYP2/3/4	 Qx-PNP = Schaltausgang in PNP Schaltung Qx-NPN = Schaltausgang in NPN Schaltung Qx-Drv = Schaltausgang in Push/Pull-Funktion ausgeführt
QAMENU	Siehe Kapitel 4 "Parametrierung des Analogausgangs"
QAHIGH	Eingabe der Füllhöhe in mm für 20 mA/10 V Signal (QAHIGH > QALOW)
QALOW	Eingabe der Füllhöhe in mm für 4 mA/0 V Signal
QAPOL	 Das analoge Ausgangssignal kann invertiert werden QA-Nrm = Analoges Ausgangssignal wie parametriert QA-Inv = Analoges Ausgangssignal wird invertiert: QAHigh 4 mA/OV und QALow 20 mA/10V
QATYP	 Einstellung des Ausgangssignal 4-20 mA 0-10 V Auto V = Qa wird mit Spannungsausgang 010 V betrieben Auto A = Qa wird mit Stromausgang 420 mA betrieben Auto? = Automatische Signalerkennung anhand der vorhandenen Bürde Bei der Abfrage des Menüs wird entweder 4-20 mA oder 0-10 V angezeigt.

Fortführung der Menü-Übersicht auf Seite 35.

2) Sichtbare Elemente hängen von der QATYP Parameter Wahl ab.

D

Parameter	Beschreibung
QAFAIL	 Ausgangsverhalten nach NE43 bei Störung (Funktion nur verfügbar wenn auch unter QATYP der Stromausgang gewählt wurde.) 3,5 mA = Analoger Stromausgang wird bei Störung auf 3,5 mA gesetzt 21,5 mA = Analoger Stromausgang wird bei Störung auf 21,5 mA gesetzt
SimCur	Siehe Kapitel 5.3 "Testen der Parametrierung"
SimVol	Siehe Kapitel 5.3 "Testen der Parametrierung"
DspVal	 Einstellung des Displays Distan = Das Display zeigt die Distanz in mm bezogen auf das Sondenende an. QaPerc = Das Display zeigt die Füllhöhe in % bezogen auf den Analogausgang QA mit den entsprechenden Schwellen QAHIGH und QALOW an. QaBarG = Das Display zeigt einen Balkengraph bezogen auf den Analogaus- gang QA mit den entsprechenden Schwellen QAHIGH und QALOW an. QaSign = Das Display zeigt den aktuellen Ausgangswert QA in mA oder V an. QxSign = Das Display zeigt die Schaltzustände an.
Filter	Siehe Kapitel 5.2 "Messwerte filtern"
SimLev	Siehe Kapitel 5.3 "Testen der Parametrierung"
RstFac	Rücksetzen der eingestellten Parameter auf die Werkseinstellungen

Fortführung der Menü-Übersicht auf Seite 37.

Passwortgeschützter Messbereich.

Parameter	Beschreibung
EXPRT	Siehe Kapitel 5.1 "Expert Modus".
Lock	Siehe Kapitel 5.10 "Displayschutz aktivieren".
Unit	Siehe Kapitel 5.11 "Anzeigeeinheit auswählen (mm/Inch)".
Offset	Siehe Kapitel 5.12 "Offset einstellen".
MeasMd	Messmodus (Measuring Mode)
	 HiSpd: max. Length = 2.005 mm, Ansprechzeit < 400 ms
	 HiAcc: max. Length = 6.005 mm, Ansprechzeit < 2.800 ms
	(stabilere Messwerte, empfohlen bei Flüssigkeiten mit kleinen DKs und bei TrsHld < 70)
	 mode-1: nicht unterstützt; deaktiviert aktuellen AutCal / Schaumkalibrierung
Mode	Siehe Kapitel 5.4 "Auswahl des Auswerteverfahrens".
MaxCol	Siehe Kapitel "5.2 Messwerte filtern".
Pulse	Siehe Kapitel 5.4 "Auswahl des Auswerteverfahrens".
AutCal	Siehe Kapitel 2 "Inbetriebnahme"
TrsHld	Dieser Wert beschreibt einen Faktor, welcher bestimmt, wie stark ein Echo sein muss, um vom Gerät erkannt zu werden. Der Wertebereich liegt zwischen 20 % und 500 %. Default ist hier 100 %. Nur mit Passworteingabe sichtbar.
	• 20 % hohe Empfindlichkeit
	• 100 % = Standard
AutoTn	Siehe Kapitel 5.3 "Automatische Einstellung der Störsignalgrenze".
CalRng	Siehe Kapitel 5.3 "Automatische Einstellung der Störsignalgrenze".
MaskZn	Siehe Kapitel 5.3 "Ausblenden von Störsignalen in maskierter Zone".
MaskTr	Siehe Kapitel 5.3 "Ausblenden von Störsignalen in maskierter Zone".
Reset	Setzt die Werte zurück.

6 Menü-Übersicht

Betriebsanleitung

Parameter	Beschreibung
Foam	Siehe Kapitel "2.3 Schauminbetriebnahme (mit Werkseinstellung)"
CalEmp	Siehe Kapitel "2.3 Schauminbetriebnahme (mit Werkseinstellung)"
CalMed	Siehe Kapitel "2.3 Schauminbetriebnahme (mit Werkseinstellung)"
FormSta	Status der Schaumkalibrierung; nur Lesezugriff
	• Inactiv; CalEmp und/oder CalMed nicht erfolgreich, bzw. nicht ausgeführt.
	Schaumbehandlung nicht aktiv!
	Active: Schaumbehandlung aktiv
Limit	Grenzwert von Schaum zur Flüssigkeit (Limit between foam and fluid)
	• Range: 20100%
	Werkseinstellung: 90%
	Mediumsoberfläche: 90%
	• Schaumoberfläche: <90%
	Bei der Messung der Schaumoberfläche kann es notwendig sein, das Limit zu reduzieren. Zeigt der Sensor einen zu geringen Füllstandswert an, so ist das Limit zu reduzieren.
Probe	Sondeneinstellungen.
length	Siehe Kapitel "2.3 Schauminbetriebnahme (mit Werkseinstellung)".
CblLen	Siehe Kapitel "5.9 Koaxialkabellänge editieren"
Туре	Auswahl zwischen Rod (Stabsonde) und Rope (Seilsonde).
Info	Sensorinformation
FrmVer	Zeigt die Firmware-Version
SerNo	Zeigt die Seriennummer
CalSta	Zeigt den Status der Behälterkalibrierung
AppTag	Messstellenbezeichnung, nur über IO-Link beschreibbar
DevTag	Gerätebezeichnung, nur über IO-Link beschreibbar
SigQua	Parameter beschreibt die Qualität des Messsignals
SigQa1	Siehe Kapitel "5.8 Signalqualität auswerten"
SigQa2	Siehe Kapitel "5.8 Signalqualität auswerten"
SigQa3	Siehe Kapitel "5.8 Signalqualität auswerten"
StEcho	Diese Funktion ermöglicht es. Diagnosedaten im Gerät abzuspeichern

7 Fehlerbehebung

7.1 Fehlermeldung am Display

Fehlerbild	Ursache	Beheben
!InvEc &	Kein AutCal ausgeführt, Störer überla- gert die Mediumsreflektion	Inbetriebnahme durchführen (siehe Kapitel 2.1 "Kurzinbetriebnahme")
Füllstand vor- handen	TrsHld-Einstellung passt nicht zum Medium	Erweiterte Inbetriebnahme durchführen (siehe Kapitel 2.2 "Erweiterte Inbetriebnah- me")
lInvEc &	Sondenlänge falsch parametriert	Sondenlänge überprüfen und mit Parametrie- rung in EXPRT-Config-LENGTH abgleichen
Tank leer	Sonde nicht vorhanden	Sonde überprüfen
!ATTNT	Ein Parameter wurde außerhalb des gültigen Wertebereichs geschrieben und deshalb angepasst	Wert erneut in gültigem Bereich schreiben
	Ein anderer Parameter wurde auf- grund einer Abhängigkeit automatisch angepasst (SPx, RPx)	Parameter erneut überprüfen
!WRONG	Falsches Passwort eingegeben	Korrektes Passwort eingeben
!NoCal	Infomation: Der AutCal-Vorgang bzw. die Schaumkalibration wurde verworfen, da die Sondenlänge, die Einlerntiefe oder der Messmodus geändert wurden	Erneut Inbetriebnahme durchführen wenn erforderlich
!CalOk	Der Einlernvorgang war erfolgreich	
!NoSig	AutCal fehlgeschlagen	Inbetriebnahme wiederholen
!faild	Menüpunkt Foam-CalEmp oder Foam- CalMed fehlgeschlagen	Anweisungen der Schauminbetriebnahme befolgen
!SC-Q1 !SC-Q2	Kurzschluss am Ausgang	Kurzschluss entfernen
!SC-Q3 !SC-Q4 !SC-Qa	Lastwiderstand am Ausgang zu niedrig	Lastwiderstand erhöhen
!IOLOf	Versorgungsspannung zu gering für IO-Link-Kommunikation	Versorgungsspannung erhöhen um gewünsch- te Funktionalität zu erhalten
!QaOff	Versorgungsspannung zu gering für Analogausgang	Versorgungsspannung erhöhen um gewünsch- te Funktionalität zu erhalten
!QxOff	Versorgungsspannung zu gering für Schaltausgänge	Versorgungsspannung erhöhen um gewünsch- te Funktionalität zu erhalten
!QaOvf	Der analoge Stromausgang Qa hat eine zu hochohmige Last	Last an Qa verringern
	Der analoge Stromausgang Qa ist nicht verdrahtet	Last an Qa anschließen

D

Fehlerbild	Ursache	Beheben
!Range	Der maximal mögliche Messbereich wurde überschritten. Eine Messung in dieser Konfiguration ist nicht möglich.	Sondenlänge und/oder Koaxialkabellänge reduzieren (siehe Kapitel "5.9 Koaxialkabel- länge editieren")
!Cable	Das Koaxialkabel ist beschädigt/ defekt	Koaxialkabel tauschen
	Die Koaxialkabellänge wurde falsch parametriert	Siehe Kapitel 5.9 "Koaxialkabellänge editieren"
Das Display zeigt nur RUN an. Sonst ist die Anzeige leer.	Der Menüparameter Menü DspVal steht auf QaBarG und der Füllstand befindet sich unterhalb von QALOW	QALOW oder DspVal ändern
Display aus	Temperatur zu hoch	Temperatur reduzieren
	Temperatur zu niedrig	Temperatur erhöhen
	Keine Versorgungsspannung	Sensor korrekt anschließen
!Err[xx] !ErM[xx] !Erl[xx] !ErO[xx]	Systemfehler	Das Gerät ist defekt und muss ausgetauscht werden, tauschen Sie bitte den Sensor.
NVFail	Speicherfehler	Das Gerät ist defekt und muss ausgetauscht werden, tauschen Sie bitte den Sensor.

7.2 Bedienung am Display

Fehlerbild	Ursache	Beheben
Der Menüpunkt SPx/RPx wird nicht angezeigt	QxMENU / OUx ist nicht auf Qx-Hno bzw. Qx-Hnc parametriert	Parametrierung von Qx durchführen (siehe Kapitel 3 "Parametrierung der Schal- tausgänge")
Der Menüpunkt FHx/FLx wird nicht angezeigt	QxMENU / OUx ist nicht auf Qx-Fno bzw. Qx-Fnc parametriert	Parametrierung von Qx durchführen (siehe Kapitel 3 "Parametrierung der Schal- tausgänge")
QAFAIL wird nicht angezeigt	Der Analogausgang Qa befindet sich im Spannungsmodus (QATYP = 0 10 V)	Parametrierung von Qa durchführen (siehe Kapitel 4 "Parametrierung des Ana- logausgangs")
SimVol wird nicht angezeigt	Der Analogausgang Qa befindet sich im Strommodus (QATYP = 4 20 mA)	Parametrierung von Qa durchführen (siehe Kapitel 4 "Parametrierung des Ana- logausgangs")
SimCur wird nicht angezeigt	Der Analogausgang Qa befindet sich im Spannungsmodus (QATYP = 0 10 V)	Parametrierung von Qa durchführen (siehe Kapitel 4 "Parametrierung des Ana- logausgangs")
EXPRT-Config wird nicht ange- zeigt	Kein korrektes Passwort eingegeben	Siehe Kapitel 5.1 "Expert Modus"

Fehlerbild	Ursache	Beheben
EXPRT-Foam wird nicht ange- zeigt	Kein korrektes Passwort eingegeben	Siehe Kapitel 5.1 "Expert Modus"
Die Darstellung der Längenan- gaben erfolgt als Kommazahl	Als Anzeigeeinheit ist Inch aktiviert.	Parametrierung der Einheit durchführen (siehe Kapitel 5.11 "Anzeigeeinheit auswählen (Millimeter/Inch)")
Das Menü zeigt nur noch PASSW an.	Der Displayschutz ist aktiviert.	Siehe Kapitel 5.10 "Displayschutz aktivieren"

7.3 Ausgänge

Fehlerbild	Ursache	Beheben
Schaltausgang verhält sich nicht wie erwartet	Fehlerhafte Parametrierung	Parametrierung des Schaltausgangs durch- führen (siehe Kapitel 3 "Parametrierung der Schal-
		tausgänge")
	Fehler liegt an, die Ausgänge des Sensors befinden sich im sicheren Zustand	Fehlerursache beseitigen
	Kabelbruch	Kabel überprüfen
Analogausgang verhält sich nicht wie erwartet	Fehlerhafte Parametrierung	Parametrierung des Analogausgangs (siehe Kapitel 4 "Parametrierung des Ana- logausgangs")
	Fehler liegt an, die Ausgänge des Sensors befinden sich im sicheren Zustand	Fehlerursache beseitigen
	Kabelbruch	Kabel überprüfen

7.4 Verhalten

Fehlerbild	Ursache	Beheben
Sensor zeigt nach Einbau einen hohen Füllstand an, obwohl der Tank leer ist	Kein AutCal ausgeführt	Inbetriebnahme durchführen (siehe Kapitel 2 "Inbetriebnahme des NGR")
Sensor zeigt bei Verwendung mit Koaxialrohr einen hohen Füllstand an, obwohl der Tank leer ist	Kein AutCal ausgeführt	Inbetriebnahme durchführen (siehe Kapitel 2 "Inbetriebnahme des NGR")
Füllstandswert auf dem Display schwankt	Unruhige Mediumsoberfläche	Filterung aktivieren (siehe Kapitel 2.1 "Kurzinbetrieb- nahme")

Fehlerbild	Ursache	Beheben
Der angezeigte Füllstandwert / SPx/RPx / FHx/FLx / QALOW/ QAHIGH / ist größer als die Son-	Es wurde ein Offset auf den Füll- standwert parametriert	Offset anpassen (siehe Kapitel 5.12 "Offset einstellen")
denlange	Falsche Sondenlänge paramet- riert	Sondenlänge anpassen (siehe Kapitel 5.6 "Parametrierung der Sondenlänge")
Füllstand springt gelegentlich auf höheren Wert	Verschmutzungen im Bereich des Prozessanschlusses	Reinigen
	Sprühkugel oder Zulauf benetzen Sonde oberhalb der Mediums- oberfläche mit Medium	Einbaubedingungen beachten Plausibilitätsfilter MaxCoL para- metrieren (siehe Kapitel "5.2 Messwerte filtern")
	Geänderte Umgebungsbedingun- gen gegenüber Situation beim AutCal-Vorgang	Erneute Inbetriebnahme durch- führen (siehe Kapitel 2 "Inbetriebnahme des NGR")
	Starke Schaumbildung	Schauminbetriebnahme durch- führen (siehe Kapitel 2.3 "Schauminbe- triebnahme")
	TrsHld zu niedrig gewählt, der Echo-Algorithmus erkennt Större- flektionen	TrsHld erhöhen
Füllstand springt gelegentlich auf 0 mm	TrsHld zu hoch gewählt	Erweiterte Inbetriebnahme durchführen (siehe Kapitel 2 "Inbetriebnahme des NGR")
	Starke Schaumbildung	Schauminbetriebnahme durch- führen
Keine Messung von geringen Füllständen bei Medien mit kleinen DKs	Erhöhten inaktiven Bereich am Sondenende bei Medien mit kleinem DK	
Erhöhte Messungenauigkeit	Verwendung des Schaum-Algo- rithms	

8 Technische Daten

8.1 Merkmale

Medium	Flüssigkeiten
Erfassungsart	Grenzstand, kontinuierlich
Sondenlänge	
Monostabsonde	200 mm 2.000 mm
Seilsonde*	1.000 mm, 2.000 mm, 3.000 mm, 4.000 mm
Einstellbarer Messbereich	95 mm 6.005 mm
Prozessdruck	-1 bar 10 bar
Prozesstemperatur	-20°C +100°C
RoHS-Zertifikat	V
IO-Link	\checkmark

8.2 Performance

Genauigkeit ¹⁾	± 5 mm
Reproduzierbarkeit ¹⁾	≤ 2 mm
Auflösung	< 2 mm
Ansprechzeit ³⁾	< 400 ms

* in Vorbereitung

Dielektrizitätskonstante	≥ 5 bei Monostabsonde / Seilsonde* ≥ 1,8 mit Koaxialrohr
Leitfähigkeit	Keine Einschränkung
Maximale Füllstandsänderung ⁴⁾	500 mm/s
Inaktiver Bereich am Prozessanschluss ²⁾	25 mm
Inaktiver Bereich am Sondenende ¹⁾	10 mm

¹⁾ Unter Referenzbedingungen mit Wasser.

²⁾ Bei parametriertem Behhälter unter Referenzbedingungen mit Wasser, ansonsten 40 mm.

³⁾ Abhängig vom Messmodus (High-Speed < 400 ms, High Accuracy < 2800 ms)

⁴⁾ Abhängig von der Parametrierung (MaxCol - Maximum change of level)

8.3 Referenzbedingungen

Behälter mit Durchmesser	1 m
Mindestabstand zu Einbauten	> 300 mm
Abstand Sondenende zu Tankboden	> 15 mm
Luftfeuchte	65 % ± 20 %
Temperatur	+20°C±5°C
Druck	1013 mbar abs. ± 20 mbar
Medium	Wasser, DK = 80
Zentrischer Einbau des Sensors	V
Behälterparametrierung vorgenommen	\checkmark

8.4 Messgenauigkeit

Messgenauigkeit bei parametriertem Behälter

47

8.5 Mechanik/Werkstoffe

Medienberührende Werkstoffe	1.4404, PTFE
Prozessanschluss	G 3/4 A, 3/4" NPT
Gehäusematerial	Kunststoff PBT
Max. Sondenbelastung	≤ 6 Nm
Schutzart	IP 67: EN 60529
Gewicht	max. 1,3 kg
Koaxial Kabel Isolierung	PVC

8.6 Elektrische Anschlusswerte

Versorgungsspannung ^{1) 2)}	12 V DC 30 V DC
Stromaufnahme	≤ 100 mA bei 24 V ohne Ausgangslast
Initialisierungszeit	≤ 5 s
Schutzklasse	ш
Anschlussart	M12 x 1, 5-pol. M12 x 1, 8-pol.
Hysterese	Min. 3 mm, frei einstellbar
Ausgangssignal ¹⁾	 4 mA 20 mA / 0 V 10 V automatisch umschaltbar je nach Ausgangslast ¹⁾ 1 PNP-Transistorausgang (Q1) und 1 PNP/NPN-Transistor- ausgang (Q2) umschaltbar oder 1 PNP-Transistorausgang (Q1) und 3 PNP/NPN-Transistor- ausgang (Q2Q4) umschaltbar (typbabhängig) ¹⁾
Signalspannung HIGH	Uv –2 V
Signalspannung LOW	≤ 2 V
Ausgangsstrom	< 100 mA
Induktive Last	< 1 H
Kapazitive Last	100 nF
Temperaturdrift	< 0,1 mm/K
Ausgangslast	4 mA 20 mA < 500 Ohm bei Uv > 15 V 4 mA 20 mA < 350 Ohm bei Uv > 12 V 0 V 10 V > 750 Ohm bei Uv \geq 14 V
Unterer Signalpegel	3,8 mA 4 mA
Oberer Signalpegel	20 mA 20,5 mA
EMV	EN 61326-1:2006, 2004/108/EG

¹⁾ Alle Anschlüsse sind verpolsicher. Alle Ausgänge sind überlast- und kurzschlussgeschützt.

²⁾ Verwenden Sie zur Stromversorgung einen energiebegrenzten Stromkreis gemäß UL61010-1 3nd Ed, Abschn. 9.3

8.7 Umgebungsbedingungen

Umgebungstemperatur Betrieb ¹⁾	-20°C +60°C
Umgebungstemperatur Lager	-40°C +80°C

¹⁾ Gemäß UL-Listing: Verschmutzungsgrad 3 (UL61010-1: 2012-05); Luftfeuchtigkeit: 80 % bei Temperaturen bis zu 31 °C; Einsatzhöhe: max 3.000 m ü.M.; nur für Indoor-Anwendungen

8.8 Maßzeichnungen

Maße in mm

Monosonde

- M: Messbereich
- L: Sondenlänge
- IA: Inaktiver Bereich am Prozessanschluss 25 mm

IAE: Inaktiver Bereich am Sondenende 10 mm

71

D

Standardversion

- M: Messbereich
- L: Sondenlänge IA: Inaktiver Bereich am Prozessanschluss 25 mm IAE: Inaktiver Bereich am Sondenende 10 mm

51

8.9 Werkseinstellung

Parameter	Werkseinstellung
SP1	80 % der Sondenlänge gemessen ab dem Sondenende
RP1	5 mm unterhalb von SP1
OU1	Q1_Hno
SP2	bei 5-polVersion: 20 % der Sondenlänge gemessen ab dem Sondenende bei 8-pol Version: 60 % der Sondenlänge gemessen ab dem Sondenende
RP2	5 mm unterhalb von SP2
0U2	Q2_Hno
TYP2	Q2_PNP
SP3	40 % der Sondenlänge gemessen ab dem Sondenende
RP3	5 mm unterhalb von SP3
0U3	Q3_Hno
SP4	20 % der Sondenlänge gemessen ab dem Sondenende
RP4	5 mm unterhalb von SP4
0U4	Q4_Hno
ТҮРЗ	Q3_PNP
TYP4	Q4_PNP
QAHigh	50 mm unterhalb Sondenanfang
QALOW	10 mm über Sondenende
QAPOL	QA_Nrm
QATYP	Auto
QAFAIL	3,5 mA
SimCur	SimOff
SimVol	SimOff
DspVal	Distan
Filter	Off
SimLev	SimOff
TrsHld	100
MaskZn	0 mm
MaskTr	50 %
Mode	Pulse
CalSta	noCal
Probe/Type	Abhängig vom Sondentyp: Rod/ Rope
MaxCol	Abhängig vom Messmodus: HiSped = AnySped, HiAcc = 10 cm/s
MeasMd	HiSpd
CalRng	6005 mm
FomSta	inactive
Limit	90
Offset	0 mm
Unit	mm
Lock	inactive

9 Bestelldaten

Typenschlüssel geführte Mikrowelle Typ NGR

Bestelldaten (Bestellbeispiel: NGR 1 2 4 2 G5 B)

Тур	Version	Material	Ausgang	Kontakt	Mechanischer Anschluss	Sondenlänge
NGR	 Stab (metallische Behälter DK ≥ 5) 2^{2]} = Koax (Kunststoff- oder Metallbehäl- ter DK ≥1,8) 	2 = Edelstahl/ PTFE	4 = 4-20 mA/0-10 V umschaltbar	2 = 1xPNP+1xPNP/NPN 4 = 1xPNP+3xPNP/NPN	G5 = G¾ AG N5 = ¾" NPT AG	0 ¹⁾ = Sondenlänge 2000 mm (Standard) L/0000 = ohne Sonde (L = 0 mm) L/xxxx ³⁾ = Länge xxxx mm (4-stellige Zahl 0200 2000 mm gerundet auf 10 mm) B ¹⁾ = montiert auf Bypass
	4 = Seil	2 = Edelstahl	4 = 4-20 mA/0-10 V umschaltbar	2 = 1xPNP+1xPNP/NPN	G5 = G¾ AG N5 = ¾" NPT AG	 4 = Sondenlänge 4000 mm (Standard) S = 10004000 mm (in Klartext angeben)

¹⁾ Nur möglich mit NGR 1. Bypass-Spezifikation, siehe NBK-M Datenblatt

²⁾ Der Einsatz eines Koaxialrohrs verbessert die Signaldetektion inbesondere bei Medien mit kleinen DK-Werten (z.B. Öl)

³⁾ L/2000 nur möglich mit NGR 2. Für NGR 1... und L = 2000 mm ist Sondenlänge Code "0" auszuwählen.

 Hinweis: Standard Sondenlänge «L»=2000 mm (NGR 1242G50 auf Lager). Sondenlänge «L» in Stufen von 10 mm bestellbar. Beispiel: 200, 210, 220, 230...2000 mm Standard Seillänge «L»=4000 mm (NGR 4242G50 auf Lager). Sondenlänge «L» in Stufen von 100 mm bestellbar. Beispiel: 1000, 1100, 1200, 1300...4000 mm bei der Bestellung bitte im Klartext angeben

Steckverbinder und Leitungen

Тур	Kurzbeschreibung
ZUB-KAB-12K502	Stromversorgungsleitung, M12, 5-polig, Stecker gerade/offenes Ende, 2 m, PUR/PVC
ZUB-KAB-12K802	Stromversorgungsleitung, M12, 8-polig, Stecker gerade/offenes Ende, 2 m, PUR/PVC

10 Wartung

Der NGR ist wartungsfrei. Wir empfehlen in regelmäßigen

Abständen ■ die Sonde auf Verschmutzung zu überprüfen

die Verschraubungen und Steckverbindungen zu überprüfen.

11 Rücksendung

Unbedenklichkeitserklärung (Kontaminationserklärung im Servicefall)

Spülen bzw. säubern Sie ausgebaute Geräte vor der Rücksendung, um unsere Mitarbeiter und die Umwelt vor Gefährdung durch anhaftende Messstoffreste zu schützen. Eine Überprüfung ausgefallener Geräte kann nur erfolgen, wenn das vollständig ausgefüllte Rücksendeformular vorliegt. Eine solche Erklärung beinhaltet alle Materialien, welche mit dem Gerät in Berührung kamen, auch solche, die zu Testzwecken, zum Betrieb oder zur Reinigung eingesetzt wurden. Das Rücksendeformular ist über unsere Internet-Adresse (www.kobold.com) verfügbar. Entsorgen Sie Gerätekomponenten und Verpackungsmaterialien entsprechend den einschlägigen

landesspezifischen Abfallbehandlungs- und Entsorgungsvorschriften des Anliefergebietes.

Hinweis!

- Umweltschäden durch von Medien kontaminierte Teile vermeiden
- Gerät und Verpackung umweltgerecht entsorgen
- Geltende nationale und internationale Entsorgungsvorschriften und Umweltbestimmungen einhalten.

<u>Batterien</u>

Schadstoffhaltige Batterien sind mit einem Zeichen, bestehend aus einer durchgestrichenen Mülltonne und dem chemischen Symbol (Cd, Hg, Li oder Pb) des für die Einstufung als schadstoffhaltig ausschlaggebenden Schwermetalls versehen:

- 1. "Cd" steht für Cadmium.
- 2. "Hg" steht für Quecksilber.
- 3. "Pb" steht für Blei.
- 4. "Li" steht für Lithium

Elektro- und Elektronikgeräte

13 Mediumsliste

Diese Mediumsliste (ab Seite 55) gibt Ihnen eine Orientierung des DK-Werts von Flüssigkeiten. Wasserbasierte Flüssigkeiten haben immer einen DK-Werten > 5, was einen einfachen Einsatz von NGR ermöglicht. Bei DK-Werten < 5 ist immer ein Koaxialrohr oder ein metallisches Tauchrohr/ Bypass zu verwenden.

Anhang 1 Mediumsliste

D

Substanz	DK- Wert
Acetal (25°C)	3,8
Acetaldehyd	15,0
Acetamid (77°C)	59,2
Acetessigsäureethylester	15,0
Aceton	21,5
Acetophenon	18,0
Acetylaceton	23,0
Acetylbromid	16,2
Acetylchlorid	15,9
Acetylendibromid	7,2
Acetylentetrabromid	5,6
Aconitsäureester	6,3
Adipinsäure	1,8
Aerosile	1,0
Aktivkohle	12,0
Alaune (60°C)	4,2
Allylalkohol	20,6
Allylchlorid	8,2
Allyljodid	6,1
Aluminiumbromid (100°C)	3,4
Aluminiumfolie	10,8
Aluminiumhydroxid	2,5
Aluminium-Späne	7,3
Aluminiumsulfat	2,6

Substanz	DK- Wert
Ameisensäure	57,9
Ammoniak	15,0
Ammoniaklösung (25%)	31,6
Ammoniaksalz	4,3
Amylalkohol	14,8
Amylamin	4,5
Anilin	7,0
Anisaldehyd	22,3
Anisol	4,5
Anthrazit	3,2
Antimonwasserstoff	1,8
Apfelsäurediethylester	10,0
Argon	1,5
Arsenwasserstoff	2,1
Arsol	2,3
Asbest	10,0
Ascorbinsäure (Vitamin C)	2,1
Azelainsäurediethylester	5,0
Azoxybenzol (36°C)	5,2
Basalt	2,5
Baumwoll-Fasermehl	3,2
Bauxit	2,5
Bentonit	8,1
Benzalchlorid	6,9

Substanz	DK- Wert
Benzaldehyd	17,6
Benzil (80°C)	10,0
Benzin	2,0
Benzol	2,3
Benzol, schwer	3,2
Benzylalkohol	13,5
Benzylamin	4,6
Benzylchlorid	7,0
Biersud	25,0
Bitumen	2,8
Blausäure	158,0
Bohröl-Emulsion	25,0
Bornylacetat	4,6
Brom	3,1
Buttersäure	3,0
Camphen	2,3
Capronsäure (71°C)	2,6
Caprylsäure	2,5
Carbazol	1,3
Carbonylcyanid	10,7
Cellit	1,6
Cetylalkohol (60°C)	3,6
Chinolin	8,8
Chlor, flüssig	2,1

D

Anhang 1 Mediumsliste

G	R
_	
	G

Substanz	DK- Wert
Chloral	6,7
Chlorbenzol	5,7
Chloressigsäure	33,4
Chlorhydrin	31,0
Chlorkalk	2,3
Chloroform (Trichlor- methan)	4,8
Cola-Essenz	17,3
Creme (Haut)	19,0
Cuminaldehyd	10,7
Cyan	2,5
Decalin	2,1
Degalan	3,1
Desmodur	10,0
Diacetonalkohol	18,2
Diamylether	3,0
Dibenzofuran (100°C)	3,0
Dibenzyl (60°C)	2,5
Dieselkraftstoff	2,1
Diethylamin	3,8
Dimethylether (Methy- lether)	5,0
Diofan	32,0
Dioxan	2,0
Diphenyl (75°C)	2,5
Druckerschwärze	4,6

Substanz	DK- Wert
Eiscreme (-20°C)	16,5
Eisen(III)Oxid rot	1,9
Emulphor	4,0
Epichlorhydrin	23,0
Erdnüsse, getrocknet	3,1
Erdnuss-Expeller	2,4
Essig	24,0
Essigsäure	6,2
Eternit	3,2
Ethanol (Ethylalkohol)	16,2
Ether	4,0
Ethylacetat	6,0
Ethylamin	6,9
Ethylbenzoat	6,0
Ethylbenzol	2,4
Ethylenchlorhydrin	25,0
Ethylenchlorid	10,6
Ethylendiamin	15,0
Ethylenoxid (-1°C)	13,9
Ethylmercaptan	6,9
Fenchon	12,8
Ferrit-Granulat	21,0
Ferrosilizium	10,0
Ferrosulfat (80°C)	32,4

Substanz	DK- Wert
Ferrozell	18,3
Fettkohle	3,4
Fettsäure (35°C)	1,7
Fischöl	2,6
Flachsschrot	1,4
Fleischknochenmehl	1,9
Fleischmehl	1,9
Flugasche	3,3
Fluor	1,5
Fluorbenzol	6,4
Fluorwasserstoff (0°C)	83,6
Flußspat	2,5
Formamid	109,0
Furan	3,0
Furfurol	41,7
Futtermittel-Schrot	2,4
Germaniumtetrachlorid	2,4
Getreideschrot	3,0
Gips	1,8
Glasfasermehl	1,1
Glasgranulat	4,0
Glasscherben	2,0
Glukose (50°C)	30,0
Glycerin	13,2

Anhang 1 Mediumsliste

D

Substanz	DK- Wert
Glycerinwasser	37,0
Glykol	37,0
Glysantin	25,0
Granuform	4,0
Guajakol	11,0
Guano (Rohphosphat)	2,5
Hafer	4,9
Harnstoff	2,9
Harz	1,5
Haselnüsse	2,0
Heißleim (150°C)	2,3
Heizöl	2,1
Helium	1,1
Heptan	1,9
Heptanal	9,1
Heptansäure (71°C)	2,6
Hepten	2,1
Hexan	1,9
Hexen	2,1
Hexylalkohol	12,5
Hibiskus	2,8
Holzhackschnitzel	2,3
Holzkohle	1,3
Holzschleifstaub	1,5

NGR

Substanz	DK- Wert
Holzspäne	1,1
Honig	24,0
Hydrazin	58,0
Imidazol, rein (100°C)	23,0
Isoamylacetat	4,8
Isoamylalkohol	15,6
Isoamylbromid	6,0
Isoamylchlorid	6,1
Isoamylether	2,8
Isoamyljodid	5,6
Isobuttersäure	2,6
lsobutylalkohol	18,1
Isobutylamin	4,4
lsobutylbenzol	2,3
Isobutylbromid	7,2
Isobutylchlorid	6,5
lsobutylcyanid	18,0
lsobutyljodid	6,5
lsobutyInitrat	11,7
lsobutylsilan	2,5
Isochinolin	10,7
Isocyanat	6,1
Isopren	2,1
Isopropanol	18,0

Substanz	DK- Wert
Isosafrol	3,3
bol	11,1
Jodbenzol	4,6
Jodmethan	7,1
Jodwasserstoff	2,9
Kaffeebohnen	1,5
Kakaobohnen	1,8
Kalilauge	3,3
Kalisalz	2,0
Kalk	2,0
Kartoffelstärke	1,7
Keramikmasse	17,0
Ketchup	24,0
Kies	2,6
Kieselgur	1,4
Kieselsäure	2,0
Knochenfett	2,7
Knochenfuttermehl	1,7
Kochsalz	23,0
Kohle, 15 % Feuchtigkeit	4,0
Kohlensäurediethylester	2,8
Kohlenstaub	2,5
Kokosfett (raff.)	2,9
Koks	3,0

D

Anhang 1 Mediumsliste

Substanz	DK- Wert
Korkmehl	1,7
Kraftfutter	3,2
Kreide	2,1
Kresol	11,0
Kresolharz	18,3
Kristallzucker	2,0
Kunstdünger	4,3
Kunststoffgranulat	1,2
Kupfererz	5,6
Lachgas	1,5
Lanolin	4,2
Latex	24,0
Laurinsäureethylester	3,4
Leim	2,0
Linolensäure	2,7
Lösungsmittel	18,0
Magermilchpulver	2,3
Mais	3,6
Maisschrot	2,1
Maisstärkesirup	18,4
Malz	2,7
Mandelsäurenitril	18,0
Marmorsteinchen (Korn 2-	2,5
Mäusefutter	2,3

Substanz	DK- Wert
Mehl	2,5
Melasse	31,3
Menthol (42°C)	4,0
Mesityloxid	15,0
Metallpulver	6,0
Methanol (Methyl- alkohol)	33,0
Methylacetat	8,0
Methylenbromid	7,0
Methylenchlorid	9,0
Methylenchlorid	9,1
Methylenjodid	5,3
Methylnitrat	23,5
Methylzellulose	3,0
Monochlormethan	9,8
Morpholin	7,3
Naphtensäure	2,6
Naphthalin	2,5
Natriumcarbonat	3,0
Natriummethylat	1,5
Natriumperborat	2,2
Natriumperoxid	2,7
Natriumsulfat	2,7
Nitrobenzol	35,0
Nitroethan	29,0

Substanz	DK- Wert
Nitroglykol	28,3
Nitroglyzerin	19,3
Nitrolack	5,2
Nitromethan	39,0
Nitrophoska	5,4
Nitrosylbromid (13°C)	15,2
Nitrosylchlorid	19,0
Nudeln, Hartweizengrieß	1,9
Octan	2,0
Octen	2,1
Octylbromid	5,0
ÖI	2,0
Ölsäure	2,5
Öl-Wasserschlamm	24,2
Oxalessigester	6,0
Palmitinsäure	2,3
Palmkerne	2,2
Palmkerne	2,8
Palmöl	1,8
Papierschnitzel	1,2
Paraffin	1,6
Paraldehyd	15,1
Pelargon	2,8
Pentaboran	21,0

Anhang 1 Mediumsliste

D

Substanz	DK- Wort
Pentachlorethan	3,8
Pentachlortoluol	4,8
Pentan	1,8
Pentanal (15°C)	11,8
Penten	2,0
Perchlorat	3,6
Perchlorbutadien	2,6
Perlite	1,7
PET-Pulver	1,5
Phenetol	4,2
Phenol	8,0
Phenolharz	7,4
Phosgen	4,3
Phosphat	4,0
Phosphor, flüssig	3,9
Phosphorsalz	4,0
Pinan	2,1
Piperidin	5,8
Polyamidgranulat	1,7
Polyethylen	1,2
Polypropylen	1,6
Polyrol	2,8
Polyvinylacetale	2,8
Popkorn	1,1

NGR

Substanz	DK- Wert
Pril	1,2
Propanal (15°C)	14,4
Propanol (Propylalkohol)	2,2
Propansäure	3,2
Propylamin	3,0
Propylen, flüssig	1,9
Propylenchlorid	9,0
Propylether	3,3
PVC-Pulver, rein	1,3
Pyridin	13,2
Pyrrol	8,0
Quarzsand	2,0
Quarzsteinmehl	2,7
Quecksilberdiethyl	2,1
Raps	3,3
Raps-Schrot	2,1
Reis	3,0
Roggen	6,0
Roggenkleie	2,2
Rübensamen	3,5
Rübenschnitzel	7,3
Ruß	18,8
Saccharoselösung	20,0
Sägemehl	1,3

Substanz	DK- Wert
Salpetersäure (98 %)	19,0
Salzsäure	5,0
Salzwasser	32,0
Sauerstoff	1,5
Schamotte	1,8
Schaumstoff-Flocken	1,1
Schmalz (80°C)	2,1
Schmierseife	32,0
Schokopulver	2,0
Schwarzlauge	32,0
Schwefel	3,5
Schwefeldioxid (Schwef- lige Säure)	14,0
Schwefelkohlenstoff, rein	2,6
Schwefelsäure	21,9
Schwefelsäure (15%)	31,0
Schwefelsäure (97%)	8,6
Schwefeltrioxid	3,1
Schwefelwasserstoff	6,0
Schweröl	2,2
Seifenflocken	9,2
Seifen-Pellets	3,5
Senf	24,0
Senfkörner	3,6
Siliconöl	2,7

D

Anhang 1 Mediumsliste

Substanz	DK- Wert
Silikonkautschuk	2,9
Sojamehl	4,5
Soja-Schrot	2,9
Sonnenblumenkerne	2,0
Spreu	1,5
Stearinsäure	2,3
Steinsalz (0-25 mm)	4,3
Styrol	2,4
Tabakstaub	1,8
Talkum	1,5
Tee-Pulver	2,0
Teer, roh	4,0
Terephtalsäure	1,5
Terpentin-Ersatz	2,0
Terpinen	2,7
Terpinolen	2,3
Tetrachlorethylen	2,5
Tetrachlorkohlenstoff	2,3
Thomaskalistaub	3,4
Thujon (0°C)	10,8
Tierkörpermehl	2,2
Titantetrachlorid	2,8
Toluol	2,4
Tonerde	2,3

Substanz	DK- Wert
Transformatorenöl	2,1
Trichloretylen	3,2
Triethylaluminium	2,9
Triptan	1,9
Trockenhefe	2,0
Ultrasil	1,4
Undecan	2,0
Valeriansäure	2,7
Viskose	34,5
Wachs	1,8
Waschbenzin	2,0
Wasser	80,3
Wasser (360°C)	10,0
Wasser, entmineralisiert	29,3
Wasser, schwer	78,3
Wasserglas (Natrium- silikat)	16,0
Wasserstoff	1,2
Wasserstoffperoxyd, rein (0°C)	84,2
Wein	25,0
Weinsäure	35,9
Weizen	4,0
Weizenstärke	2,5
Xylit	40,0
Xylol	2,3

Substanz	DK- Wert
7ahnnasta	18.3
Zampaota	10,0
Zellulose	1,2
Zement	2,2
Zinkoxid	1,5
Zink-Puder	4,4
Zucker	1,8
Zunder	12,0

IO-Link Operating Instructions for NGR-XXXXXX

1. Physical Layer

SIO Modus	yes
Min Cycle Time	16000 µs
Baudrate	COM2
Process Data Length	32 Bit

2. Process Data

Record: 4	Byte							
Bitoffset								
Byte 0	Level	1 30	29	28	27	26	25	24
Type/Subindex	Unsigned Integer	14	1		1	1	1	
Bitoffset						18		
Byte 1	Level 23	3 22	21	20	19	18	Reserved 17	16
Type/Subindex	Unsigned Integer	14				7	Integer 12	
z								
Bitoffset								
Byte 2	18 Reserved	5 14	13	12	11	10	9	8
Type/Subindex	Integer 12							
Bitoffset		6		4	3	2	1	0
Byte 3	Reserved	7 6	5 DeviceState	4	Q4 3	Q3 2	Q2 1	Q1 0
Type/Subindex	Integer 12	6	Unsigned Integer 2	5	Boolean 4	Boolean 3	Boolean 2	Boolean 1

3. Service Data

IO-Link specif	ĩc						
Index	Name	Format	Length	Access ¹	Default	Value / Range	Remark [Unit]
dec (hex)		(Offset)			Value		
16 (0x10)	Vendor Name	String	64 Byte	ro	Kobold Messring		
18 (0x12)	Product Name	String	64 Byte	ro	NGR-		
19 (0x13)	Product ID	String	64 Byte	ro	NGR-XXXXXX		
21 (0x15)	Serial Number	String	16 Byte	ro			
22 (0x16)	Hardware Version	String	64 Byte	ro			
23 (0x17)	Firmware Version	String	64 Byte	ro			
24 (0x18)	Application Specific Tag	String	Byte	rw	***		

Kobold device	e specific						
Index dec (hex)	Name	Format (Offset)	Length	Access ¹	Default Value	Value / Range	Remark [Unit]
64 (0x40)	Device Specific Tag	String	16 Byte	rw	***		
90 (0x5A)	Part Number	String	8 Byte	ro	Part Number		
100 (0x64)	SP1/FH1	UInt	16 Bit	rw	06005	Q1 SP1: Setpoint	/ FH1: High Limit Point
101 (0x65)	RP1/FL1	UInt	16 Bit	rw	06005	Q1 RP1: Resetpo	int / FL1: Low Limit Point
102 (0x66)	OU1	UInt	8 Bit	rw	0 = Q1_Hno 1 = Q1_Hnc 2 = Q1_Fno 3 = Q1_Fnc 4 = Q1_Eno 5 = Q1_Enc	Q1 Function	
103 (0x67)	SimQ1	UInt	8 Bit	rw	0 = Q1Norm 1 = Q1On 2 = Q1Off	Simulate Q1	
104 (0x68)	SP2/FH2	UInt	16 Bit	rw	06005	Q2 SP2: Setpoint	/ FH2: High Limit Point
105 (0x69)	RP2/FL2	UInt	16 Bit	rw	06005	Q2 RP2: Resetpo	int / FL2: Low Limit Point
106 (0x6A)	OU2	UInt	8 Bit	rw	0 = Q2_Hno 1 = Q2_Hnc 2 = Q2_Fno 3 = Q2_Fnc 4 = Q2_Eno 5 = Q2_Enc	Q2 Function	

Kobold device	e specific					
Index dec (hex)	Name	Format (Offset)	Length	Access	Default Value	Value / Range Remark [Unit]
107 (0x6B)	TYP2	UInt	8 Bit	rw	0 = Q2_PNP 1 = Q2_NPN 2 = Q2_DRV	Q2 Output Driver
108 (0x6C)	SimQ2	UInt	8 Bit	rw	0 = Q2Norm 1 = Q2On 2 = Q2Off	Simulate Q2
109 (0x6D)	SP3/FH3	UInt	16 Bit	rw	06005	Q3 SP3: Setpoint / FH3: High Limit Point
110 (0x6E)	RP3/FL3	UInt	16 Bit	rw	06005	Q3 RP3: Resetpoint / FL3: Low Limit Point
111 (0x6F)	OU3	UInt	8 Bit	rw	0 = Q3_Hno 1 = Q3_Hnc 2 = Q3_Fno 3 = Q3_Fnc 4 = Q3_Eno 5 = Q3_Enc	Q3 Function
112 (0x70)	ТҮР3	UInt	8 Bit	rw	$0 = Q3_PNP$ $1 = Q3_NPN$ $2 = Q3_DRV$	Q3 Output Driver
113 (0x71)	SimQ3	UInt	8 Bit	rw	0 = Q3Norm 1 = Q3On 2 = Q3Off	Simulate Q3
114 (0x72)	SP4/FH4	UInt	16 Bit	rw	06005	Q4 SP4: Setpoint / FH4: High Limit Point
115 (0x73)	RP4/FL4	UInt	16 Bit	rw	06005	Q4 RP4: Resetpoint / FL4: Low Limit Point
116 (0x74)	OU4	UInt	8 Bit	rw	0 = Q4_Hno 1 = Q4_Hnc 2 = Q4_Fno 3 = Q4_Fnc 4 = Q4_Eno 5 = Q4_Enc	Q4 Function
117 (0x75)	TYP4	UInt	8 Bit	rw	0 = Q4_PNP 1 = Q4_NPN 2 = Q4_DRV	Q4 Output Driver
118 (0x76)	SimQ4	UInt	8 Bit	rw	0 = Q4Norm 1 = Q4On 2 = Q4Off	Simulate Q4
119 (0x77)	QAHIGH	UInt	16 Bit	rw	06005	QA High Limit Point
120 (0x78) 121 (0x79)	QALOW	UInt	16 Bit 8 Bit	rw rw	06005 0 = QA Nrm	QA Low Limit Point QA Polarity
			· ·		$1 = QA_Inv$	
122 (0x7A)	QATYPE	UInt	8 Bit	rw	0 = 4-20mA 1 = 0-10V 2 = Auto 3 = Auto 4-20mA 4 = Auto 0-10V	QA Output Driver
123 (0x7B)	QAFail	UInt	8 Bit	rw	0 = 3.5mA 1 =21.5mA	QA Failure State
124 (0x7C)	SimCur	UInt	8 Bit	rw	0 = SimOff 1 = 3.5mA 2 = 3.8mA 3 = 4.0mA 4 = 10.0mA 5 = 12.0mA 6 = 18.0mA 7 = 20.0mA 8 = 20.5mA 9 = 21.5mA	Simulate QA Current
125 (0x7D)	SimVol	UInt	8 Bit	rw	0 = SimOff 1 = 0.0V 2 = 2.0V 3 = 4.0V 4 = 6.0V 5 = 8.0V 6 = 10.0V 7 = 10.5V	Simulate QA Voltage
126 (0x7E)	DspVal	UInt	8 Bit	rw	0 = Distan 1 = Qa-Perc 2 = QaBarG 3 = QaSign 4 = QxSign	Display Mode

Kobold device	specific						
Index dec (hex)	Name	Format (Offset)	Length	Access	Default Value	Value / Range	Remark [Unit]
128 (0x80)	SimLev	UInt	8 Bit	rw	6 = 600ms 10 = 1000ms 14 = 1400ms 20 = 2s 50 = 5s 100 = 10s 0 = SimOff 1 = 0 % 2 = 25 % 3 = 50 % 4 = 75 % 5 = 100 %	Simulate Level	
205 (0xCD)	Profile Version	String	4 Byte	ro		Т	
300 (0x12C)	Lock	Bool	1 Bit	rw	false = inactive		
301 (0x12D)	Unit	UInt	8 Bit	rw	0 = mm 1 = inch	Display Level Unit	Diection
302 (0x12E)	Offset	UInt	16 Bit	rw	0	03000	Level Offset
303 (0x12F)	Mode	UInt	8 Bit	rw	0 = Pulse	Algorithm Mode	
304 (0x130) 305 (0x131)	MeasMd MaxCoL	UInt UInt	8 Bit 8 Bit	rw	1 = Foam 0 = mode1 1 = HiSpd 2 = HiAcc 3 = mode2 2 = 2cm/s 5 =5cm/s 10 = 10cm/s	Measuring Mode	
					50 = AnySpeed	Maximum Change of	of Level
310 (0x136)	TrsHld	UInt	16 Bit	rw	100	20500	Threshold for Pulse Detection
311 (0x137)	CalRng	UInt	16 Bit	rw	6005	956005	AutCal Range
312 (0x138)	MaskZn	UInt	16 Bit	rw	0	06005	Masked Zone Range
313 (0x139)	MaskTr	UInt	16 Bit	rw	50	10500	Masking Threshold
320 (0x140)	Limit	UInt	8 Bit	rw	90	20100	Foam Algorithm Detec- tion Limit
330 (0x14A)	Length	UInt	16 Bit	rw	956005	Probe Length	J
331 (0x14B)	CblLen	UInt	16 Bit	rw	200350 0	Coaxial Cable Leng	jth
332 (0x14C)	Туре	UInt	8 Bit	rw	0 = Rod 1 = Rope	Probe Type	
342 (0x156)	CalSta	UInt	8 Bit	ro	0 = NoCal 1 = AutCal 2 = FomCal 3 = CalMis	Calibration Status	
350 (0x15E)	SigQa1	UInt	8 Bit	ro	Signal Quality 1		
351 (UX15F)	SigQa2	UInt	8 Bit	ro	Signal Quality 2		
360 (0x160)	SupplyVoltage	UInt	16 Bit	ro	Sensor Supply	Voltage [V]	
361 (0x169)	SensorTemperature	Int	16 Bit	ro	Internal Electro	nics Temperature [°	C1
362 (0x16A)	PowerUpCounter	UInt	32 Bit	ro	Power Up Coun	ter	-1
363 (0x16B)	OperatingTime	UInt	32 Bit	ro	Run Time [s]		
364 (0x16C)	SystemMonitor	Record	4 Byte	ro	System Monitor		
1 (0x01)	SystemState	Bit (0)	2 Bit	ro	0 = FAILURE 1 = WARNING 2 = OK		
2 (0x02)	SC-Q2	Bit (2)	1 Bit	ro	true = active		
3 (0x03)	SC-Q3	Bit (3)	1 Bit	ro	true = Active		
4 (0x04)	SC-Q4	Bit (4)	1 Bit	ro	true = Active		
5 (0x05)	SC-Qa	Bit (5)	1 Bit	ro	true = Active		
6 (0x06)	QaOvf	Bit (6)	1 Bit	ro	true = Active		
7 (0x07)	reserved	Bit (7)	1 Bit	ro	true = Active		
8 (0x08)	reserved	Bit (8)	1 Bit	ro	true = Active		

Kobold devic	e specific						
Index dec (hex)	Name	Format (Offset)	Length	Access	Default Value	Value / Range	Remark [Unit]
9 (0x09)	InvEc	Bit (9)	1 Bit	ro	true = Active false = -		
10 (0x0A)	Cable	Bit (10)	1 Bit	ro	true = Active false = -		
11 (0x0B)	Range	Bit (11)	1 Bit	ro	true = Active false = -	•	
12 (0x0C)	MaskZ	Bit (12)	1 Bit	ro	true = Active false = -	•	
13 (0x0D)	Temp	Bit (13)	1 Bit	ro	true = Active false = -	•	
14 (0x0E)	reserved	Bit (14)	1 Bit	ro	true = Active false = -	1	
15 (0x0F)	reserved	Bit (15)	1 Bit	ro	true = Active false = -	1	
16 (0x10)	reserved	Bit (16)	1 Bit	ro	true = Active false = -	1	
17 (0x11)	reserved	Bit (17)	1 Bit	ro	true = Active false = -	•	
18 (0x12)	reserved	Bit (18)	1 Bit	ro	true = Active false = -	•	
19 (0x13)	reserved	Bit (19)	1 Bit	ro	true = Active false = -	•	
20 (0x14)	reserved	Bit (20)	1 Bit	ro	true = Active false = -	1	
365 (0x16D)	MinimumLevel	UInt	16 Bit	ro	06005	Minimum Level S Last Reset	Since Power Up /
366 (0x16E)	MaximumLevel	UInt	16 Bit	ro	06005	Maximum Level Last Reset	Since Power Up /
380 (0x17C)	InputData	Array	32 Byte	rw	Unsigned Integer8 [32]	Input Data	
381 (0x17D)	OutputData	Array	32 Byte	ro	Unsigned Integer8 [32]	Output Data	
382 (0x17E)	UniqueID	Array	8 Byte	ro	Unsigned Integer8 [8]	Unique Device II	D
383 (0x17F)	Reserved	Array	8 Byte	rw	Unsigned Integer8 [8]	Reserved	

4. Standard Command

Index dec (hex)		Access	Value	Name	Remark [Unit]
2 (0x02)	Standard Command	wo	130	Restore Factory Settings	
			165	Pulse_AutCal	
			166	Pulse_AutoTune	
			167	Pulse_Reset	
			170	Foam_CalEmp	
			171	Foam_CalMed	
			172	Foam_Reset	
			180	Reserved0	
			190	Reset_LevelMinMax	
			200	Reserved1	
			201	Reserved2	
			202	Reserved3	
			203	Reserved4	

IO-Link	OBOLD
	MANUFACTURER'S LANCE DECLARATION OF CONFORMITY
	We:
	Kobold Messring GmbH Nordring 22-24 65719 Hofheim Germany
	declare under our own responsibility that the product(s):
	NGR-XXXXXX (IO-Link Device)
	to which this declaration refers conform to:
	 IO-Link Interface and System Specification, V1.1, July 2013 (NOTE 1,2)
	 IO Device Description, V1.1, August 2011 IO-Link Interface and System Specification, V1.0, January 2009 (NOTE 1)
	IO Device Description, V1.0.1, March 2010
	The conformity tests are documented in the test report: IO-Link_Device_TestReport_NGR_Kobold_2015.11.06.pdf IO-Link_PhysicalLayer_TestReport_NGR_Kobold_2015.11.12.pdf IO-Link_Integration_TestReport_NGR_Kobold_2015.05.06.pdf
	Issued at Hofheim, 15.04.2019
	Kling por Willing
	Harald Peters Manfred Wenzel
	General Manager Proxy Holder
Reproduction	and all distribution without written authorization prohibited

NOTE 1Relevant Test specification is V1.1, July 2014NOTE 2Additional validity in Corrigendum Package 2015

15 EU-Konformitätserklärung

15 EU-Konformitätserklärung

Wir, Kobold Messring GmbH, Hofheim-Ts., Bundesrepublik-Deutschland, erklären, dass das Produkt

Füllstandssensor Typ: NGR -XXXXXX

mit den unten angeführten Normen übereinstimmt:

EN 61326-1	Störaussendung: Klasse A
EN 61326-2-x	Störfestigkeit: Industrielle Umgebungen
EN IEC 63000:2018	Technische Dokumentation zur Beurteilung von Elektro- und Elektronikgeräten hinsichtlich der Beschränkung gefährlicher Stoffe

und folgende EU-Richtlinie erfüllt:

- **2014/30/EU** Elektromagnetische Verträglichkeit (EMV-Richtlinie)
- 2011/65/EU RoHS (Kategorie 9)
- 2015/863/EU Delegierte Richtlinie (RoHS III)

Hofheim, den 12. Juli 2022

H. Volz Geschäftsführer

Por Villin

M. Wenzel Prokurist

16 UK Declaration of Conformance

16 UK Declaration of Conformance

We, KOBOLD Messring GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

@/jY`gYbgcf AcXY: NGR -XXXXXX

to which this declaration relates is in conformity with the standards noted below: h this declaration relates is in conformity with the standards noted below:

EN 61326-1	9a]gg]cbg.'7`Ugg`A
EN 61326-2-x	=a a i b]hm`=bXi ghf]Ư`Ybj]fcba Ybh
EN IEC 63000:2018	Technical documentation ffor the assessment of electrical
	and electronic products with respect to the restriction of
	hazardous substancesor the assessment of
	electrical and electronic products with respect
	to the restriction of hazardous substances

AlsAlso the following UK guidelines are fulfilled:

G'=' &\$% #/\$-% Electromagnetic Compatibility Regulations 2016
 G'=' &\$%# \$' & The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012 Compability Regulations 2016 The

H. Volz

General Manager

Ppa. Vulle

M. Wenzel Proxy Holder

Hofheim, 12. July 2022

Vertrieb durch:

Kobold Messring GmbH Nordring 22-24 D-65719 Hofheim Tel.: +49(0)6192-299-0 Fax: +49(0)6192-23398 E-Mail: info.de@kobold.com Internet: www.kobold.com

Version: K09/0223