

Operating Instructions for

Digital Indicating Unit

Frequency input: 0,01 Hz to 999,99 Hz

Connection for Namur-, NPN-, PNP- and TTL-sensors

Model: DAG-M4F..., 96 x 48 mm

DAG-M4F

We don't accept warranty and liability claims neither upon this publication nor in case of improper treatment of the described products.

The document may contain technical inaccuracies and typographical errors. The content will be revised on a regular basis. These changes will be implemented in later versions. The described products can be improved and changed at any time without prior notice.

© Copyright

All rights reserved.

1. Contents

1.	Cont	ents	2		
2.	Note		4		
3.	Instru	ıment Inspection	4		
4.	Regu	lation Use	4		
5.	Brief	description	5		
6.	Assembly				
7.	Electrical connection				
8.	Func	tion and operation description	8		
9.	Settii	ng up the device	9		
	9.1	Switching-on			
	9.2	Standard parameterization (Flat operation level)	10		
	9.3	Programming interlock RUN			
	9.4	Extended parameterization (Professional operation level)			
		t to factory settings			
		ns / Relays			
		aces RS232 and RS485			
		rammer examples			
		nical Information			
		r Codes			
		nsions			
		y advices			
		elimination			
		osal			
). EU Declaration of Conformance45				
	. UK Declaration of Conformity46				
22.	Appe	ndix MODBUS Device Interface	47		

page 2 DAG-M4F K08/0623

Manufactured and sold by:

Kobold Messring GmbH Nordring 22-24 D-65719 Hofheim Tel.: +49(0)6192-2990

Fax: +49(0)6192-23398 E-Mail: info.de@kobold.com Internet: www.kobold.com

2. Note

Please read these operating instructions before unpacking and putting the unit into operation. Follow the instructions precisely as described herein.

The instruction manuals on our website www.kobold.com are always for currently manufactured version of our products. Due to technical changes, the instruction manuals available online may not always correspond to the product version you have purchased. If you need an instruction manual that corresponds to the purchased product version, you can request it from us free of charge by email (info.de@kobold.com) in PDF format, specifying the relevant invoice number and serial number. If you wish, the operating instructions can also be sent to you by post in paper form against an applicable postage fee.

Operating instructions, data sheet, approvals and further information via the QR code on the device or via www.kobold.com

The devices are only to be used, maintained and serviced by persons familiar with these operating instructions and in accordance with local regulations applying to Health & Safety and prevention of accidents.

When used in machines, the measuring unit should be used only when the machines fulfil the EC machinery directive.

3. Instrument Inspection

Instruments are inspected before shipping and sent out in perfect condition. Should damage to a device be visible, we recommend a thorough inspection of the delivery packaging. In case of damage, please inform your parcel service / forwarding agent immediately, since they are responsible for damages during transit.

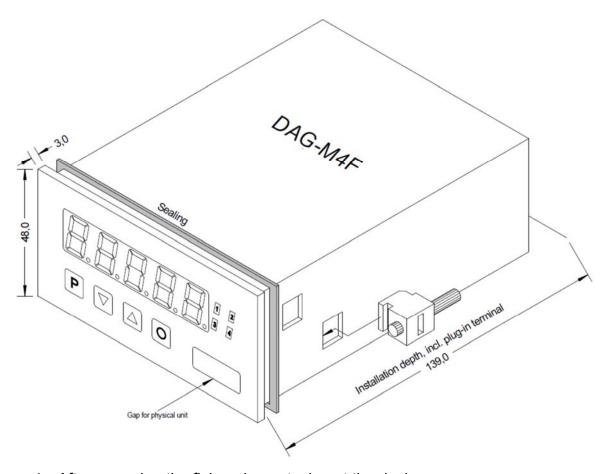
Scope of delivery:

The standard delivery includes:

Digital Indicating Unit model: DAG-M4F

4. Regulation Use

Any use of the device, which exceeds the manufacturer's specification, may invalidate its warranty. Therefore, any resulting damage is not the responsibility of the manufacturer. The user assumes all risk for such usage.


page 4 DAG-M4F K08/0623

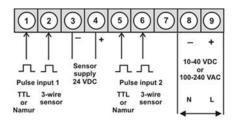
5. Brief description

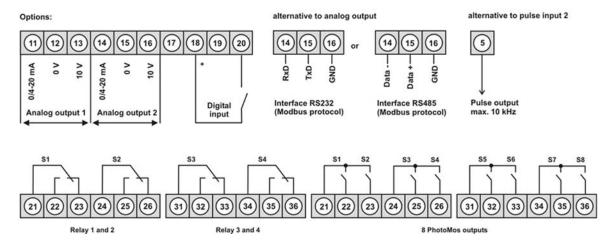
The panel meter **DAG-M4F** evaluates pulses in many different ways and shows the result in the 5-digit LED-display. Available options are: frequency coverage with optional filters, summate of pulses or display values via time, detection of a rotational speed or collection of a position via an incremental encoder. The results can be monitored via alarm conditions and can be displayed onto the optional switching point. Furthermore, the results can be freely scaled on an optional analog output and relayed to a control system. The device can be operated directly by Namur sensors, 3-wire sensors, switching/slider contacts, incremental encoders (HTL-/TTL-output) or TTL-signals. Via the 4 navigation keys on the front, the device can be adjusted onto different kind of applications and later on different functions of the device can be controlled. Numerous applications can be realized with this device, like e.g. tachometer, revolution counter, flowmeter, dosing equipment, filling capacity meter, baking time meter of a baking oven, flying knife, position evaluation, position surveillance, flow rate surveillance, acoustic discharge measurements and so on. By use of the integrated, configurable functions like permanent min/max-recording. averaging, frequency filter, setpoint setting, threshold value recording via alarm system. 30-points-linearisation, mathematic charging and many more, you receive a universal applicable modern system for your demands in measuring and control technique.

6. Assembly

Please read the following Safety advices on page 25 before installation and keep this user manual for future reference.

- 1. After removing the fixing elements, insert the device.
- 2. Check the seal to make sure it fits securely.
- 3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.


CAUTION! Tor torque should not exceed 0.1 Nm!


The dimension symbols can be exchanged before installation via a channel on the side!

page 6 DAG-M4F K08/0623

7. Electrical connection

Type DAG-M4F8 supply 100-240 VAC, DC ± 10%
Type DAG-M4F7 supply 10-40 VDC, galv. Isolated, 18-30 VAC

Advice

If Namur sensors with a nominal voltage of approx. 8 V are used, then a sensor supply of 12 VDC is needed. For devices with a sensor supply terminals 4 and 18, as well as terminals 3 and 19 need to be galvanically connected in the device.

Connection examples

Below you find some connection examples with practical applications:

Bild

8. Function and operation description

Operation

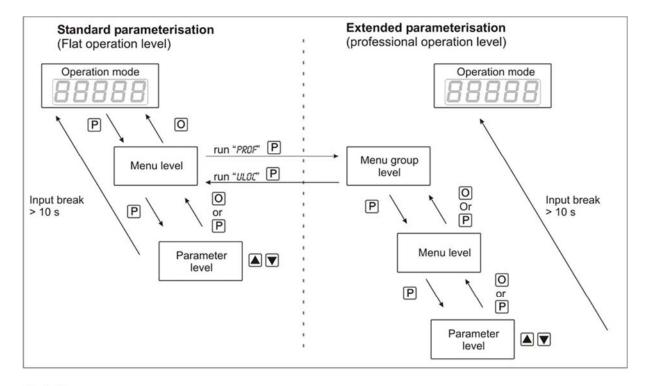
The operation is divided into three different levels.

Menu level (delivery status)

This level was designed for the standard settings of the device. Only menu items which are sufficent to set the device into operation are displayed. To get into the professional level, run through the menu level and parameterize **prof** under menu item **RUN**.

Menu group level (complete function volume)

Suited for complex applications as e.g. linkage of alarms, setpoint treatment, totalizer function etc. In this level function groups which allow an extended parameterization of the standard settings are available. To leave the menu group level, run through this level and parameterize **uloc** under menu item **RUN**.


Parameterization level

Parameter deposited in the menu item can be parameterized here. Functions, that can be changed or adjusted, are always signalized by a flashing of the display. Settings that are made in the parameterization level are confirmed with **[P]** and thus saved. Pressing the **[O]-key** ("zero-key") leads to a break-off of the value input and to a change into the menu level. All adjustments are saved automatically by the device and changes into operating mode, if no further key operation is done within the next 10 seconds.

Level	Key	Description
	Р	Change to parameterisation level and deposited values.
Menu level		Keys for up and down navigation in the menu level.
	0	Change into operation mode.
	Р	To confirm the changes made at the parameterization level.
Parameterisation level		Adjustment of the value / the setting.
	0	Change into menu level or break-off in value input.
	Р	Change to menu level.
Menu group level		Keys for up and down navigation in the menu group level.
	0	Change into operation mode or back into menu level.

page 8 DAG-M4F K08/0623

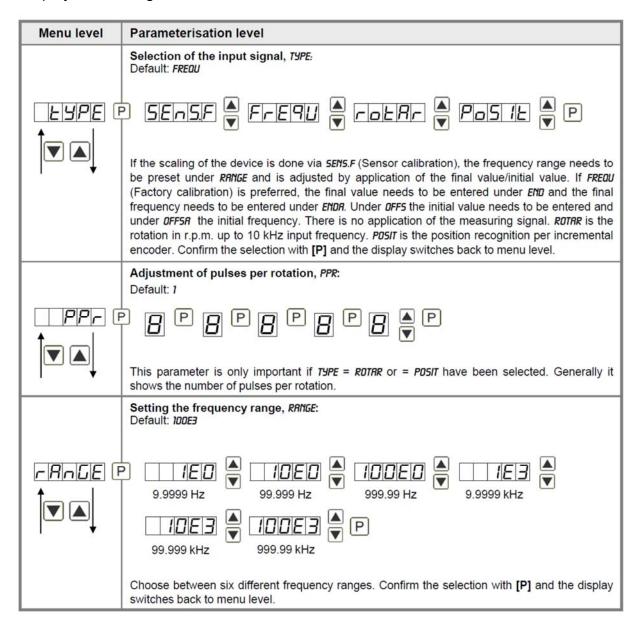
Function chart

Underline:

- P Takeover
- ▲ Value selection (+)
- O Stop
- ▼ Value selection (-)

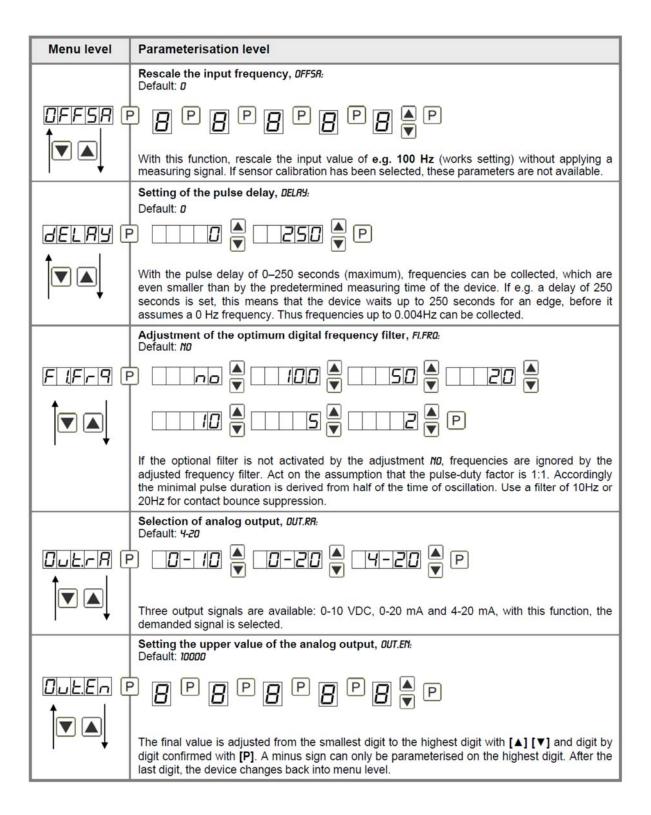
9. Setting up the device

9.1 Switching-on

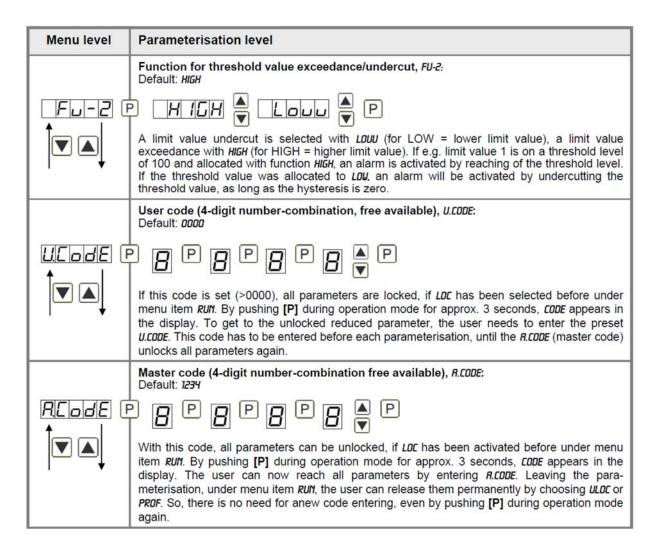

Once the installation is complete, start the device by applying the voltage supply. Before, check once again that all electrical connections are correct.

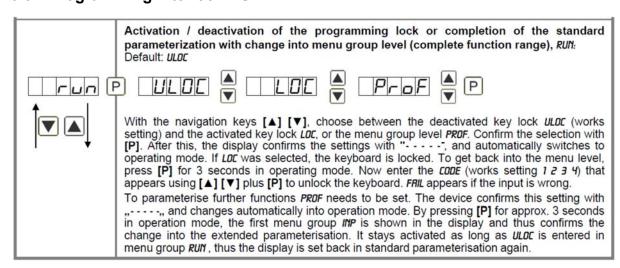
Starting sequence


For 1 second during the switching-on process, the segment test (8 8 8 8) is displayed, followed by an indication of the software type and, after that, also for 1 second, the software version. After the starting sequence, the device switches to operation/display mode.


9.2 Standard parameterization (Flat operation level)

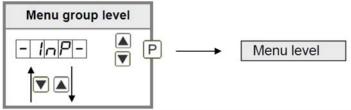
To parameterize the display, press the **[P]-key** in operating mode for 1 second. The display then changes to the menu level with the first menu item **TYPE**.

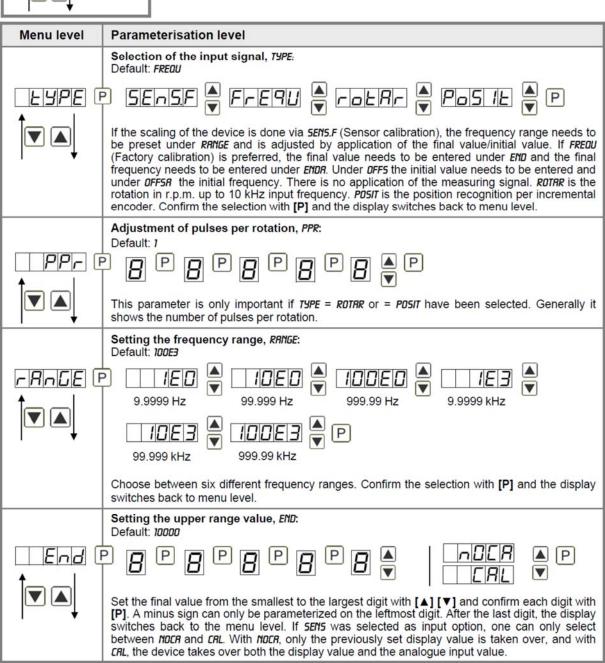

page 10 DAG-M4F K08/0623

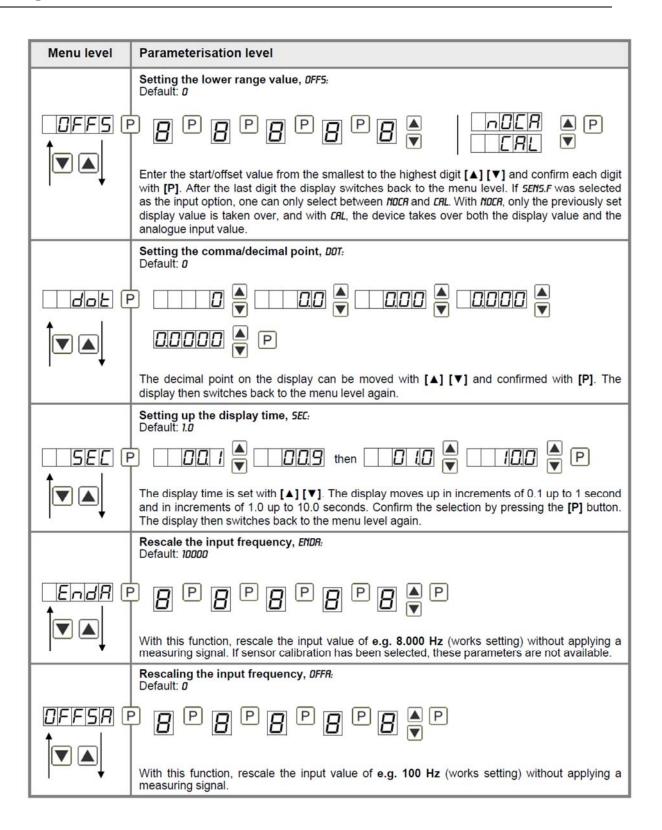


page 12 DAG-M4F K08/0623

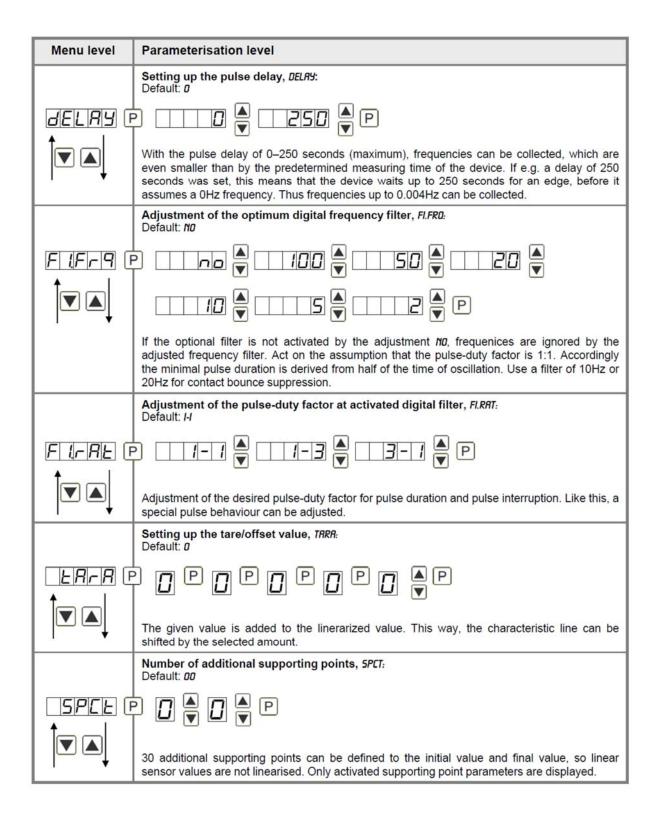
Menu level	Parameterisation level
	Setting the lower value of the analog output, DUT.OF: Default: DD000
	8 P 8 P 8 P 8 P P
	The final value is adjusted from the smallest digit to the highest digit with [▲] [▼] and digit by digit confirmed with [P]. A minus sign can only be parameterised on the highest digit. After the last digit, the device changes back into menu level.
	Threshold values / limit values, LI-1: Default: 2000
<u> </u>	
	For both limit values, two different values can be parameterized. With this, the parameters for each limit value are called up one after another.
	Hysteresis for limit values, HY-1: Default: 00000
	For all limit values exists a hysteresis function, that reacts according to the settings (threshold exceedance / threshold undercut).
	Function for threshold value exceedance/undercut, FU-1: Default: HIGH
Fu-1	P HIGH & Loud P
	The limit value undercut can be selected with LOUU (LOW = lower limit value) and limit value exceedance can be selected with HIGH (HIGH = upper limit value). If e.g. limit value 1 is on a switching threshold of 100 and occupied with function HIGH, the alarm will be activated by reaching the threshold. If the limit value is allocated to LOU, an alarm will be activated by undercut of the threshold. See page 29.
	Threshold values / limit values, LI-2: Default: 3000
	This value defines the threshold, that activates/deactivates an alarm.
	Hysteresis for limit values, HY-2: Default: 00000
	The delayed reaction of the alarm is the difference to the threshold value, which is defined by the hysteresis.

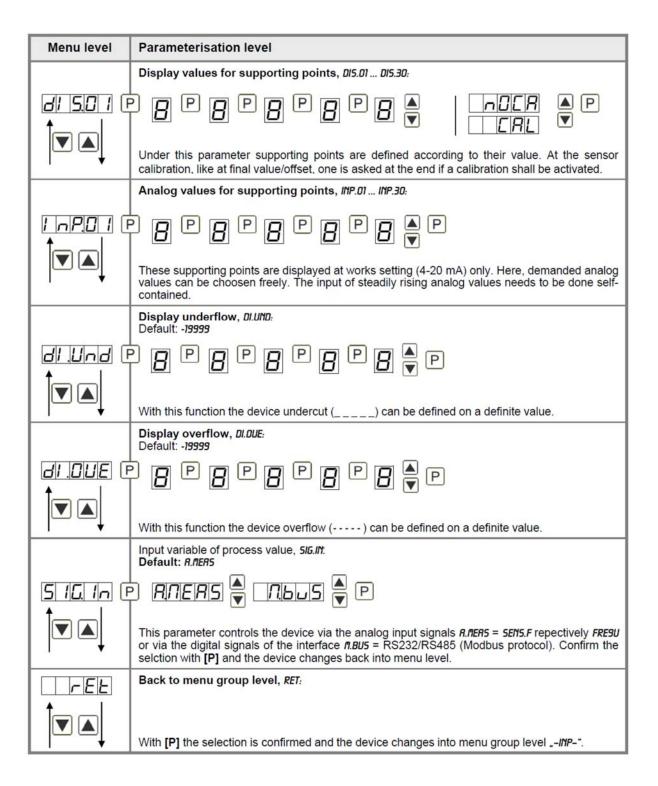

9.3 Programming interlock RUN

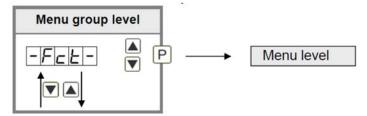


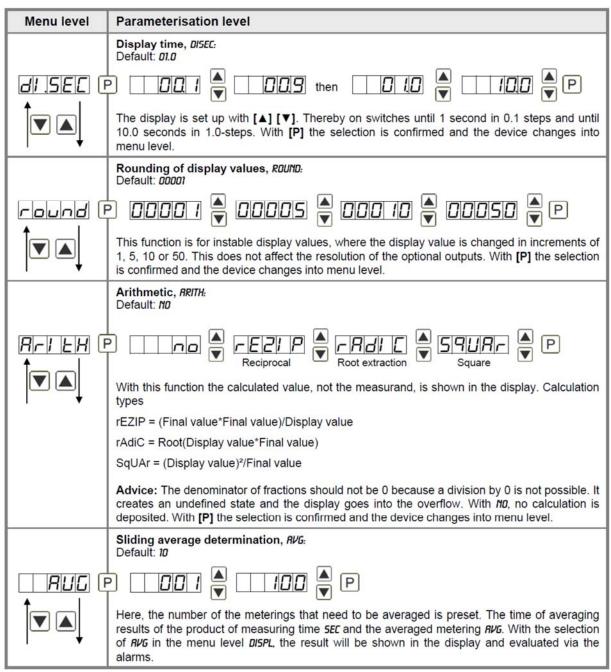

page 14 DAG-M4F K08/0623

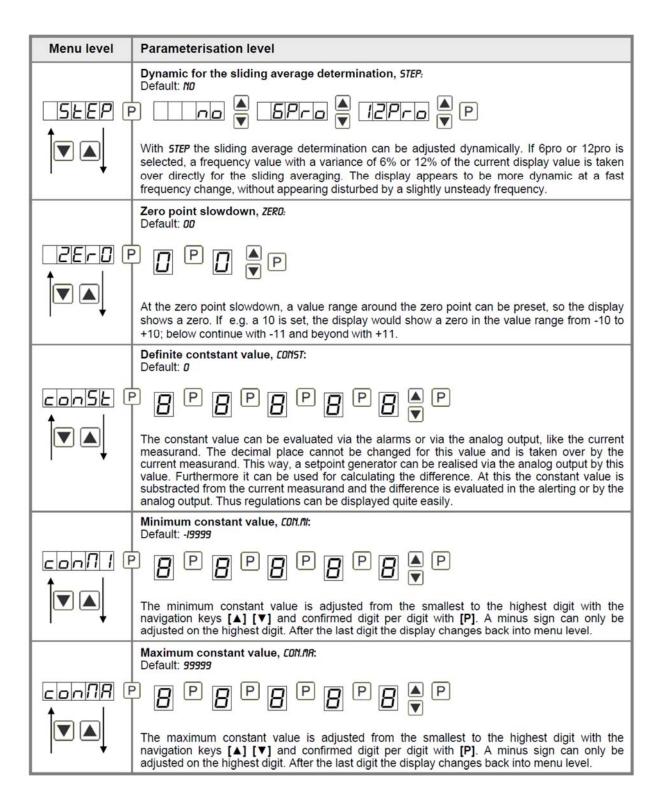
9.4 Extended parameterization (Professional operation level)


9.4.1 Signal input parameters

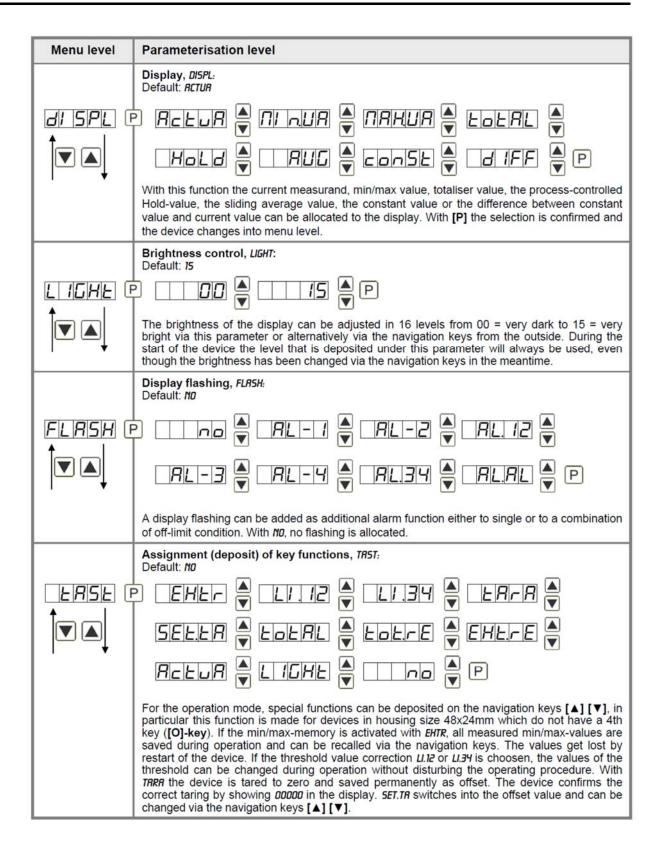


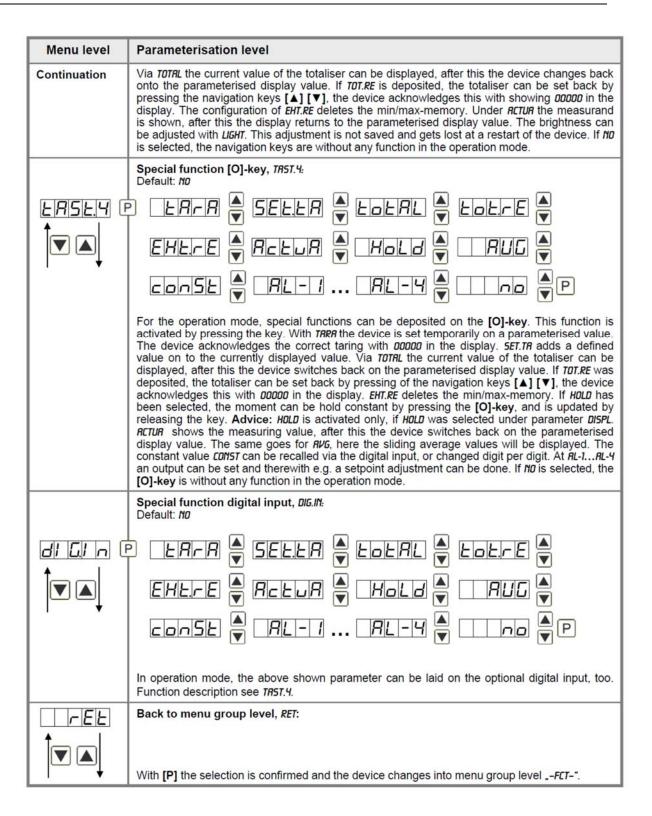

page 16 DAG-M4F K08/0623

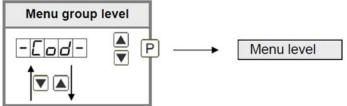


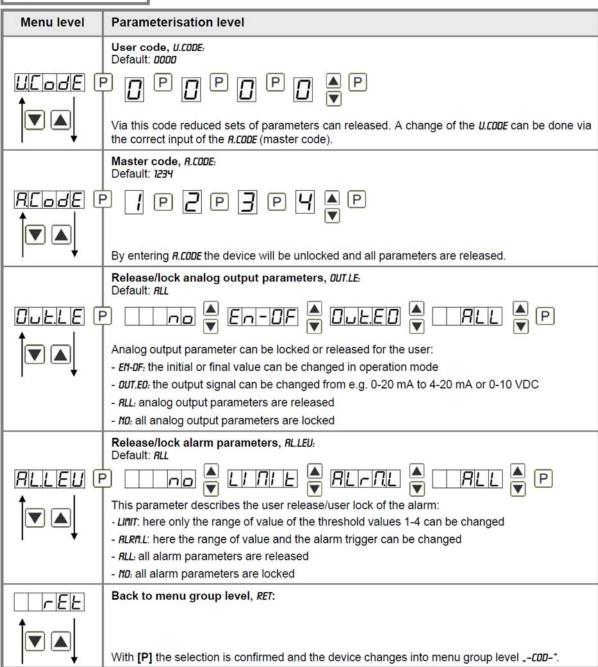


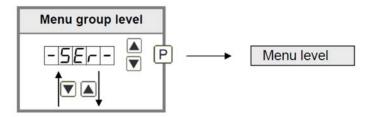
page 18 DAG-M4F K08/0623

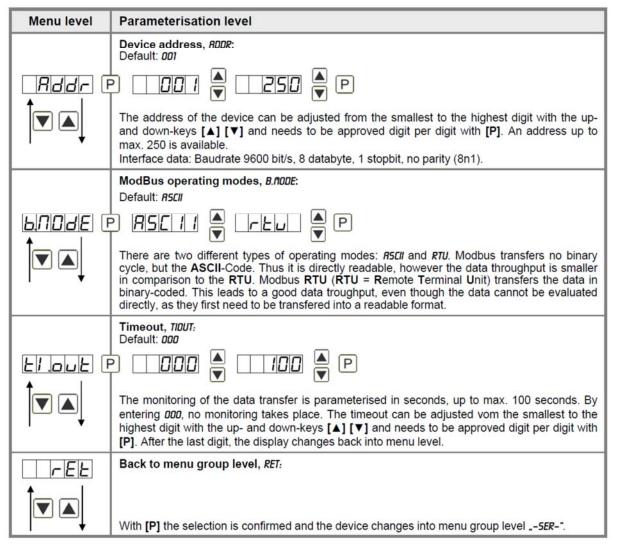

9.4.2 General parameters

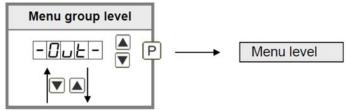


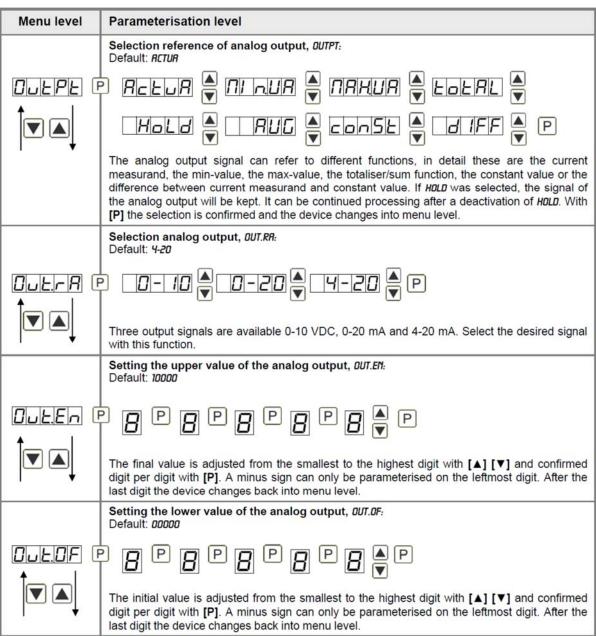

page 20 DAG-M4F K08/0623

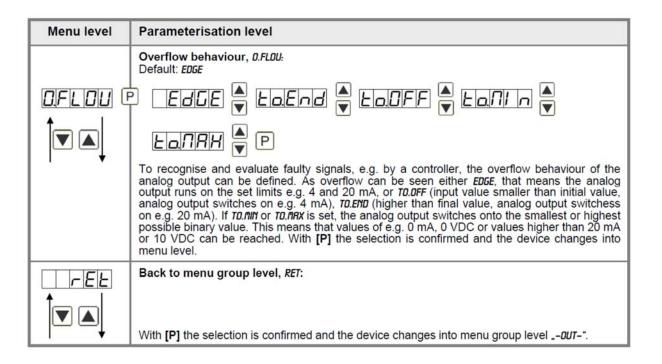



page 22 DAG-M4F K08/0623

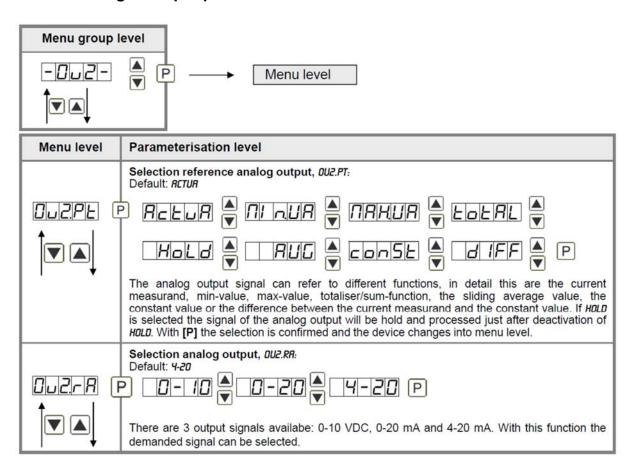

9.4.3 Safety parameters

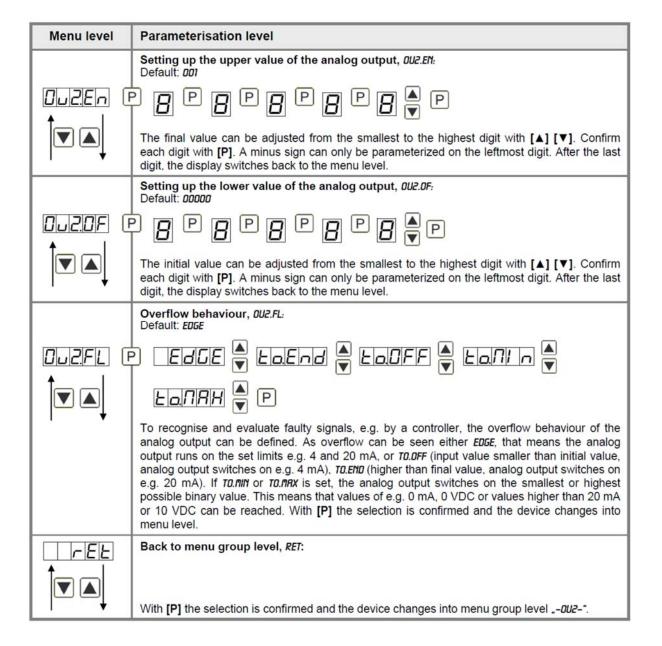

9.4.4 Serial parameters

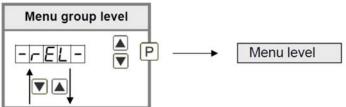


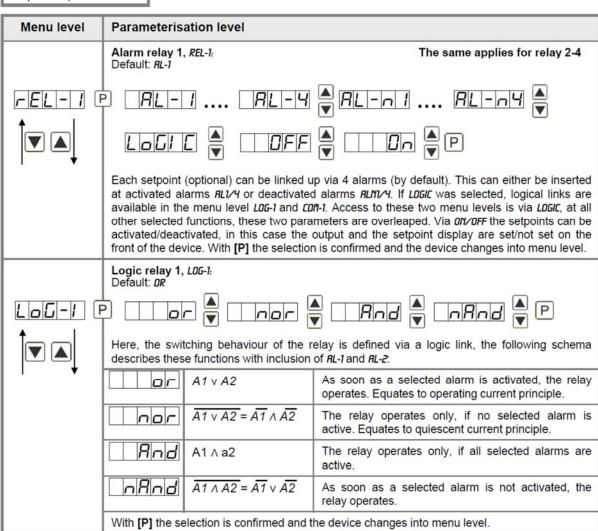


page 24 DAG-M4F K08/0623

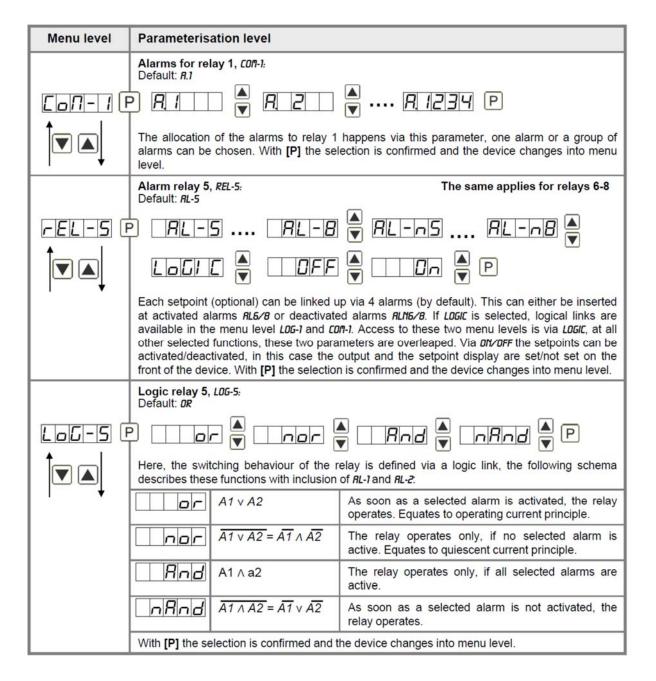

9.4.5 Analogue output parameters 1

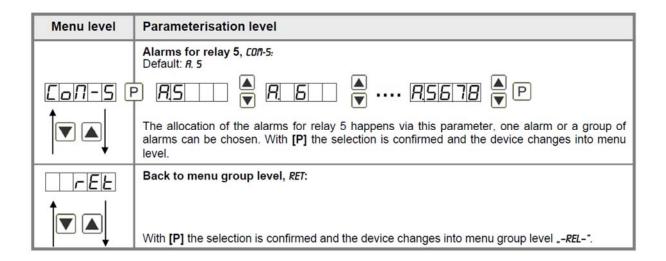


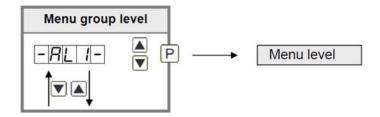

9.4.6 Analogue output parameters 2

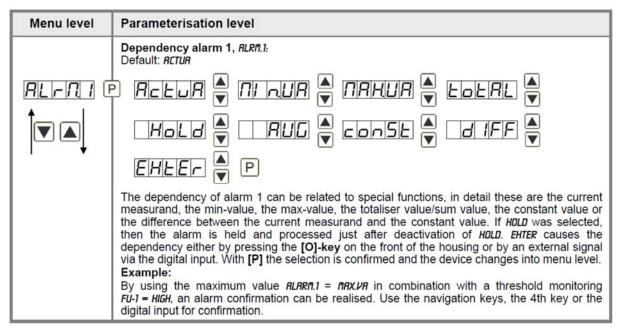


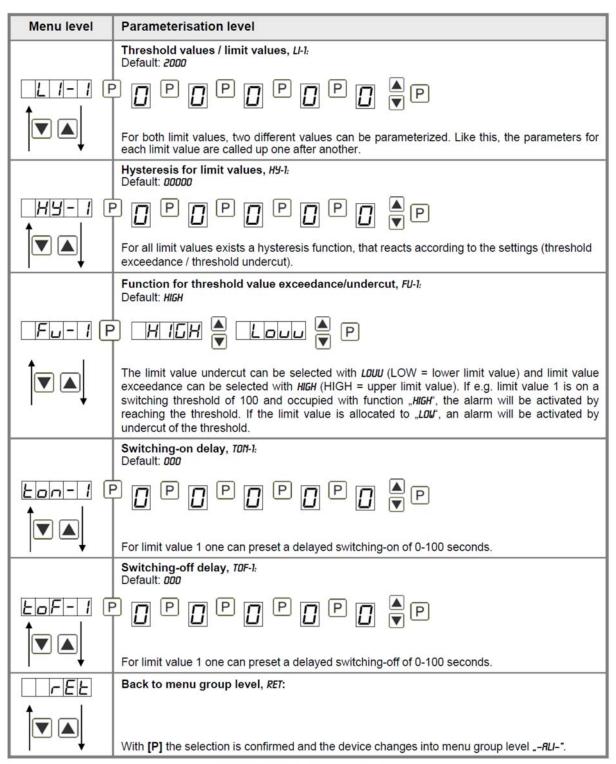
page 26 DAG-M4F K08/0623



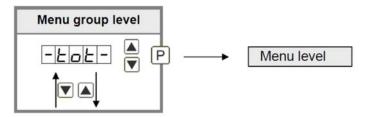

9.4.7 Relay functions

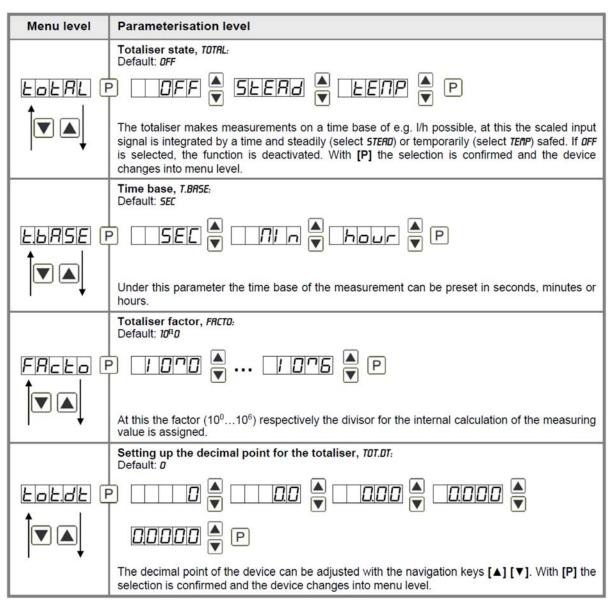


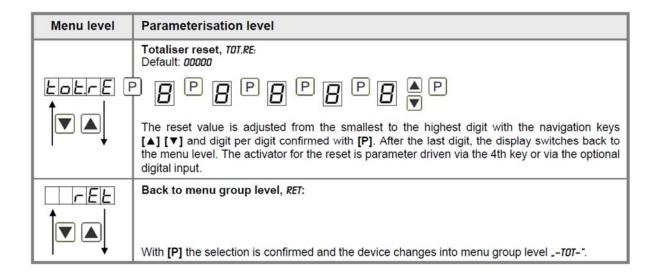

page 28 DAG-M4F K08/0623



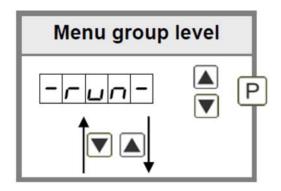
9.4.8 Alarm parameters




page 30 DAG-M4F K08/0623


The same applies to -RL2- to -RL8-.

9.4.9 Totalizer (Volume measurement)



page 32 DAG-M4F K08/0623

Programming interlock RUN

Description see page 12, menu level RUN

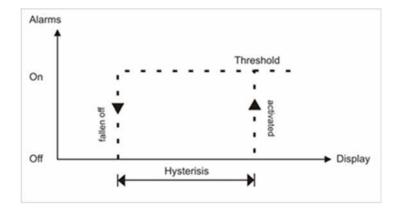
10. Reset to factory settings

To return the unit to a defined basic state, a reset can be carried out to the default values.

The following procedure should be used:

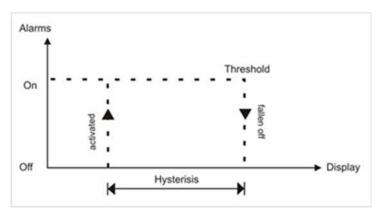
- Switch off the power supply
- Press button [P]
- Switch on voltage supply and press [P] button until "- - - " appears in the display

With reset, the default values of the program table are loaded and used for subsequent operation. This puts the device back to the state in which it was supplied.

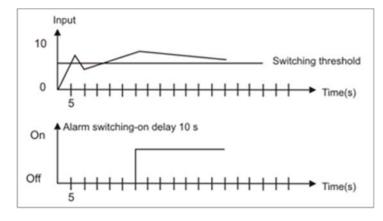

Caution! All application-related data are lost.

11. Alarms / Relays

This device has 4 virtual alarms that can monitor one limit value in regard of an undercut or exceedance. Each alarm can be allocated to an optional relay output S1-S4; furthermore, alarms can be controlled by events like e.g. hold or min/max-value.


Function principle of alarms / relays				
Alarm / Relay x	Deactivated, instantaneous value, min/max-value, hold-value, totaliser value, sliding average value, constant value, difference between instantaneous value and constant value or an activation via the digital input or via the [O]-key.			
Switching threshold	Threshold / limit value of the change-over			
Hysteresis	Broadness of the window between the switching thresholds			
Working principle	Operating current / Quiescent current			

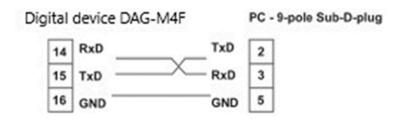
page 34 DAG-M4F K08/0623


Operating current

By operating current, the alarm S1-S2 is off below the threshold and on on reaching the threshold.

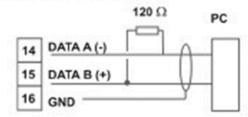
Quiescent current

By quiescent current the alarm S1-S2 is on below the threshold and switched off on reaching the threshold.



Switching-on delay

The switching-on delay is activated via an alarm and e.g. switched 10 seconds after reaching the switching threshold, a short-term exceedance of the switching value does not cause an alarm, respectively does not cause a switching operation of the relay. The switching-off delay operates in the same way, keeps the alarm / the relay switched longer for the parameterized time.


12. Interfaces RS232 and RS485

Connection RS232

Connection RS485

Digital device DAG-M4F

The interface **RS485** is connected via a screened data line with twisted wires (Twisted-Pair). On each end of the bus segment a termination of the bus lines needs to be connected. This is necessary to ensure a secure data transfer to the bus. For this a resistance (120 Ohm) is interposed between the lines Data B (+) and Data A (–).

page 36 DAG-M4F K08/0623

13. Programmer examples

Example for the rotation speed adjustment

In this application the rotation speed of an axis shall be collected via a toothed wheel with 30 sprockets, per Namur sensor. It is then displayed with one position after decimal point and the dimension rpm.

Parameter	Settings	Description
LYPE	roLAr	Rotation – rotation speed measurement up to 10 kHz
PPC	30	Number of sprockets
dob		1 position after decimal point

Advice: The input frequency may be maximum 9.999 kHz in this operating module. So, a rotation speed parameterization via the frequency adjustment is rarely necessary.

Example for the position coverage:

A measuring system for length works via an incremental encoder with two dephased output signals (typically A and B) and 100 pulse/rotation. The axis perimeter was calculated in a way that the measuring section can be extracted by a rotation of 6 cm = 60 mm. The display shall show the relative position in millimeter. There is a zero point position with a limit switch, that can zero the display if required.

Parameter	Settings	Description
LYPE	P05 1E	Positioning – rotary encoder
PPr		Pulse number per rotation
End	50	Change of length per rotation
d 10.1n	LR-R	Display zero

Advice: The display starts always on position zero. The parameter **dig.in** can be found under parameter group **–fct–** in the extended parameter sation **Prof**.

Example for angle coverage:

On a manually operated bender for sheet metal the bending angle shall be displayed in degree. The device is in zero state (0°) during switching on of the display. An incremental encoder with 360 pulses/rotation is used.

Parameter	Settings	Description
LYPE	Po5 1E	Positioning – rotary encoder
PPr	360	Pulse number per rotation
End	360	Angle sum per rotation

Examples: Adjustment according to number of sprockets at unknown rotation speed.

- nearly 100% of the rotation speeds are in the range of 0 to 30.000 r.p.m.
- the number of sprockets varies (without gearing) between 1 and 100
- in automation, the frequency supply never exceeds 10 kHz (rather 3 kHz)

Assume a rotation speed of 60 r.p.m. at 1 Hz, whereat the real frequency value will not be considered.

Our example complies with a number of sprockets of 64.

Setting up the advice

Based on the default settings of the display, the following parameters need to be changed:

Parameter	Settings	Description
LISPE	FLEPU	Applying of the measuring signal is not applicable.
-R-GE	IE3	Complies with 9.9999 Hz
End	<u> </u>	Assumed final value
EndR	0.0054	Complies with 64 sprockets

page 38 DAG-M4F K08/0623

If the frequency needs to be displayed with a position after decimal point, then a 60 has to be selected as final value for this adjustment.

Parameter	Settings	Description
LYPE	FIFERU	Applying of the measuring signal is not applicable.
- R - GE		Complies with 9.9999 Hz
End		Assumed final value
dob		1 position after decimal point
EndR	0.0054	Complies with 64 sprockets

Example: Rotation speed of a machine shaft

There are 4 sprockets on one machine shaft. Applied in an angle of 90° to each other and to the rotation speed measurement. The sprockets are collected via a proximity switch and evaluated by the frequency device, which shall display the rotation speed in U/min.

0...3600 U/min is preset as rotation speed range of the machine.

Calculation of the input frequency

Number of sprockets = 4

Rotation speed = 3600 U/min

Final rotation speed
$$\left[\frac{U}{\min}\right]$$
Final frequency [Hz] = $\frac{S}{\min} x$ Number of sprockets

Final frequency [Hz] =
$$\frac{3600 \quad \frac{U}{\text{min}}}{60 \quad \frac{s}{\text{min}}} \times 4 = 240 \text{ Hz}$$

Setting up the device

Based on the default settings of the device, following parameters need to be changed

Parameter	Settings	Description	
LYPE	FLERU	As the input frequency is known, the device does not need to be applied to the measuring section.	
- ROGE	100E0	The final frequency is in the range of 100.00 to 999.99 Hz.	
End	3600	A rotation speed of 3600 shall be displayed as final value.	
EndR	240.00	The final frequency for display value 3600 is 24.00 Hz.	

14. Technical Information

Operating instructions, data sheet, approvals and further information via the QR code on the device or via www.kobold.com

15. Order Codes

Operating instructions, data sheet, approvals and further information via the QR code on the device or via www.kobold.com

16. Dimensions

Operating instructions, data sheet, approvals and further information via the QR code on the device or via www.kobold.com

page 40 DAG-M4F K08/0623

17. Safety advices

Please read the following safety advices and the assembly *chapter 6* before installation and keep it for future reference.

Proper use

The **DAG-M4F device** is designed for the evaluation and display of sensor signals.

DANGER! Careless use or improper operation can result injury personal injury and / or can damage the equipment.

Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

Installation

The **DAG-M4F device** must be installed by a suitably **qualified specialist** (e.g. with a qualification in industrial electronics).

Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the voltage supply should not exceed a value of 0.5 A N.B fuse!
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or free-wheeling diodes
- Keep input, output and supply lines separate from one another and do not lay them parallel with each other. Position "go" and "return" lines next to one another. Where possible use twisted pair. This way best measuring results can be received.

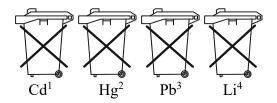
DAG-M4F

- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity.
 Connect the screening on one side on a suitable potential equalizer (normally signal ground).
- The device is not suitable for installation in areas where there is a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and / or can destroy the equipment.
- The terminal area of the device is part of the service. Herer electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanic isolated potentials within one complex need to be placed on an appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due faulty wiring, can be avoided.

page 42 DAG-M4F K08/0623

18. Error elimination

	Error description	Measures
1.	The device shows a permanent overflow	 The input frequency is too high for the selected frequency range. Correct RRNGE according to this. Disturbing pulses lead to an increased input frequency, activate FI.FRQ at smaller frequencies or shield the senor line. A mechanic switching contact chatters. Activate the frequency filter FI.FRQ with 10 or 20 kHz. The display was taught faulty under TYPE = SENS.F. Error elimination see below.
2.	The device shows a permanent underflow.	 An offset frequency <i>OFFSR</i> bigger than 0 Hz respectively a "Living zero" was selected, in which no frequency is aligned. Check the sensor lines or set the <i>OFFSR</i> onto 0 Hz. The display underflow <i>DL.UND</i> was selected too high. The according parameter needs to be adapted. The device was taught faulty under <i>TYPE</i> = <i>SENS.F</i>. Error elimination see below.
3.	The displayed values switches sporadical.	 Disturbances lead to short-term display switches. For smaller frequences use the frequency filter FI.FRO, select a higher measuring time or use the sliding averaging. The sprockets that needs to be collected are not evenly spread on a shaft or are not measured accurately. Use the sliding averaging "RVG" if necessary with the dynamic function STEP. The displayed value DISPL needs to be set on RVG.
4.	The display remains on zero.	 The sensor was not connected properly. Check the connection lines and if necessary the sensor supply. Best directly on the screw terminals of the device! A PNP- respectively NPN-output does not reach the required threshold. Check the voltage between terminal 2 and 3 with a multimeter. Depending on signal form it generally shoud be between 4 V and 15 V. The thresholds can be checked more savely with an oscilloscope. If necessary include an external pull-up or pull-down. A Namur-sensor does not react. Check the distance between the sensor and the sprocket / survey mark and if necessary measure the voltage between 1 & 3. In open condition the input voltage needs to be smaller than 2.2 V and in active condition bigger than 4.6 V. The selected range of the input frequency is too high. Reduce the frequency range RRINGE to a smaller value. The activated frequency filter FI.FRQ suppresses the relevant pulses. Increase the filter frequency FI.FRQ or use the adaption of the key proportion FI.RRT. If this should not work, temporarily deactivate the frequency filter with FI.FRQ = NO. The device was taught faulty under TYPE = SENS.F. Change into TYPE / FREQU and preset the assumed frequency range RRINGE and the according initial and final values END, OFFS, ENDR, and OFFSR. Check this way, if a frequency signal was connected to the input.
5.	The device shows HELP in the 7-segment display	The device located an error in the configuration memory, excecute a reset to the default values and set up the device according to your application.
6.	Program numbers for the parameterisation of the input are not available	The programming interlock is activated. Enter correct code.
7.	The device shows <i>ERR1</i> in the 7-segment display	Contact the manufacturer if errors of this kind occur.
8.	The device does not react as expected.	• If you are not sure, if the device has been parameterised before, restore the state of delivery as described in <i>chapter 6</i> .


19. Disposal

Note!

- Avoid environmental damage caused by media-contaminated parts
- Dispose of the device and packaging in an environmentally friendly manner
- Comply with applicable national and international disposal regulations and environmental regulations.

Batteries

Batteries containing pollutants are marked with a sign consisting of a crossed-out garbage can and the chemical symbol (Cd, Hg, Li or Pb) of the heavy metal that is decisive for the classification as containing pollutants:

- 1. ,,Cd" stands for cadmium
- 2. "Hg" stands for mercury
- 3. "Pb" stands for lead
- 4. "Li" stands for lithium

Electrical and electronic equipment

page 44 DAG-M4F K08/0623

20. EU Declaration of Conformance

We, KOBOLD Messring GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

Digital Indicator and Controller Model: DAG-M4F

to which this declaration relates is in conformity with the standards noted below:

EN 61010-1:2010+A1:2019+A1:2019/AC:2019

Safety requirements for electrical equipment for measurement, control and laboratory use - Part 1: General requirements

EN 61326-1:2013

Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements

EN IEC 63000:2018 Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances

Also, the following EC guidelines are fulfilled:

2014/30/EU EMC Directive

2014/35/EU Low Voltage Directive 2011/65/EU RoHS (category 9)

2015/863/EU Delegated Directive (RoHS III)

Hofheim, 27 April 2023

H. Volz General Manager M. Wenzel Proxy Holder

21. UK Declaration of Conformity

We, KOBOLD Messring GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

Digital Indicator and Controller Model: DAG-M4F

to which this declaration relates is in conformity with the standards noted below:

BS EN 61010-1:2010+A1:2019

Safety requirements for electrical equipment for measurement, control, and laboratory use. General requirements

BS EN 61326-1:2013

Electrical equipment for measurement, control and laboratory use. EMC requirements. General requirements

BS EN IEC 63000:2018

Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances.

Also, the following UK guidelines are fulfilled:

Electromagnetic Compatibility Regulations 2016
Electrical Equipment (Safety) Regulations 2016
The Restriction of the Use of Certain Hazardous Substances
in Electrical and Electronic Equipment Regulations 2012

Hofheim, 05 June 2023

H. Volz General Manager M. Wenzel Proxy Holder

ppa. Wully

page 46 DAG-M4F K08/0623

22. Appendix MODBUS Device Interface

MODBUS Device Interface for M-Line

interface parameters: 1 Start-, 8 Daten-, 1 Stopbit, no parity, 9600 baud

Compatibility – The interface is compatible with the Modicon Modbus protocol. That is, all the registers have a size of 16-bits. Larger data types are then occupied by several registers in a row. It also supports a non-Modicon compatible mode. In this mode, each data type is only one register corresponding to the data type size (minimum is always 16-bits).

Info: Modicon - company that has produced the first PLC, now Schneider Electric

Note: Access to data types must prove the plurality of registers always be in a read-write and must not be distributed to several write accesses!

Device address: Device address as a value between 1 and 247 can be used. To address 0 multiple devices can simultaneously achieve (broadcast), if the corresponding function is supported (no reception is possible, for example device reset).

Transfer Mode: The devices support the RTU mode (binary data, default) and ASCII mode (alphanumeric characters - hexadecimal). The RTU mode is faster because fewer bytes but must be trans-mitted this critical time. The ASCII mode is more suitable for communication with PC based systems, since they often can not meet the time-critical conditions for the RTU mode.

Note: The device configuration with the PM tool is possible only in ASCII mode.

Supported data types

Name	Number range	Size	Register count Modicon mode	Register count not Modicon mode
INT08	-128127	2 Byte	1	1
UINT08	0255	2 Byte	1	1
INT16	-3276832767	2 Byte	1	1
UINT16	065535	2 Byte	1	1
INT32	-2147843648 2147843647	4 Byte	2	1
UIN32	04294967295	4 Byte	2	1
INT64	-9223372036854775808 9223372036854775807	8 Byte	4	1
FLOAT	-/+3.402823466e-/+38	4 Byte	2	1

Adress range

Range hex	dec	Comment
0x0000 0x3FFF	0 16383	Reservated (not Modicon mode)
0x4000 0x4FFF	16383 20497	16-Bit Integer without decimal place
0x5000 0x5FFF	20480 24575	Reservated
0x6000 0x6FFF	24576 28671	32-Bit Integer without decimal place
0x7000 0x7FFF	28672 32767	32-Bit Float
0x8000 0xFFFF	32768 65535	Reservated

Supported function codes

Code (hex)	Function	Comment
0x03	READ HOLDING REGISTERS	For example measuring values or alarms
0x04	READ INPUT REGISTER	Same function like 0x03
0x08	DIAGNOSTIC	Diagnose informations
0x10	WRITE MULTIPLE REGISTERS	For example measuring values or alarms

page 48 DAG-M4F K08/0623

Register description

Name	Index	Access mode	Min/Max- value data type	Com	ment
Measuring channel	0x4400	r/w	065535 UNIT16	User	defined identification
A1	04500	.,	065535	Bit	Funktion
Alarm status	0x4500	r/W	UNIT16	0	Alarm 1 active
				1	Alarm 2 active
				2	Alarm 3 active
				3	Alarm 4 active
				4	Alarm 5active
				5	Alarm 6 active
				6	Alarm 7 active
				7	Alarm 8 active
				815	Reservated
Relay status	0x4600	r/-	065535 UNIT16	Bit	Funktion
				0	Relay 1 active
				1	Relay 2 active
				2	Relay 3 active
				3	Relay 4 active
				4	Relay 5 active
				5	Relay 6 active
				6	Relay 7 active
				7	Relay 8 active
				815	reserviert
Display brightness	0x4700	r/w	015		dark (lowest level) oright (highest level

Note: 4-digit display is the minimum value and the maximum value -2000 10,000.

The display area is limited to 4-digit displays from -1999 to 9999 and on 5-digit -1999 to 99999. A measured value of -20000 or 100000 (or -2000 to 10000 or 4-digit display) signalisert an underflow or overflow of the measuring range. The same is also valid if on the last digit of the display, a symbol of a unit of measurement is displayed.

Name	Index	Access mode	Min/Max- value data type	Comment				
Time stamp Low-Word	0x6000	r/w	035999 UINT32	10ms Stepps. Reset after 1 hour.				
Time stamp I High-Word	0x6001							
Fieldvalue Low-Word	0x6002	r/-	04294967295	Field value of ADC				
Fieldvalue High-Word	0x6003		UINT32					
Prozessvalue Low-Word	0x6004	r/w	-20000100000	Process value				
Prozessvalue High-Word	0x6005		INT32					
Prozessvalue-Min Low-Word	0x6006	r/w	-20000100000	Minimum value				
Prozessvalue-Min High-Word	0x6007		INT32					
Prozessvalue-Max Low-Word	0x6008	r/w	-20000100000	Maximum value				
Prozessvalue-Max High-Word	0x6009		INT32					
Prozessvalue-Tot Low-Word	0x600A	r/w	-20000100000	Totalizer (displayed value)				
Prozessvalue-Tot High-Word	0x600B	1	INT32					
Prozessvalue-Hld Low-Word	0x600C	r/-	-20000100000	Hold value				
Prozessvalue-Hld High-Word	0x600D		INT32					
Prozessvalue-Avg Low-Word	0x600E	r/-	-20000100000	Average value (averaging function)				
Prozessvalue-Avg High-Word	0x600F		INT32					
Prozessvalue-Abs Low-Word	0x6010	r/-	-20000100000	Absolute value				
Prozessvalue-Abs High-Word	0x6011		INT32					
Prozessvalue-Nom Low-Word	0x6012	r/w	-20000100000	Nominal value, Set value				
Prozessvalue-Nom High-Word	0x6013		INT32					
Prozessvalue-Diff Low-Word	0x6014	r/-	-20000100000	Difference value				
Prozessvalue-Diff High-Word	0x6015		INT32					
Limit alarm 4 Law Word	0,40500		10000 00000					
Limit alarm 1 Low-Word	0x6500	r/w	-1999999999 INT32					
Limit alarm 1 High-Word	0x6501	rhu						
Limit alarm 2 Low-Word	0x6502	r/w	-1999999999 INT32					
Limit alarm 2 High-Word	0x6503	whee						
Limit alarm 3 Low-Word	0x6504	r/w	-1999999999 INT32					
Limit alarm 3 High-Word	0x6505							
Limit alarm 4 Low-Word	0x6506	r/w	-1999999999 INT32					
Limit alarm 4 High-Word	0x6507							
Limit alarm 5 Low-Word	0x6508	r/w	-1999999999 INT32					
Limit alarm 5 High-Word	0x6509	,						
Limit alarm 6 Low-Word	0x650A	r/w	-1999999999 INT32					
Limit alarm 6 High-Word	0x650B							
Limit alarm 7 Low-Word	0x650C		-1999999999 INT32					
Limit alarm 7 High-Word	0x650D							

page 50 DAG-M4F K08/0623

Grenzwert Alarm 8 High-Word	0x650F		INT32					
Adressbereich 0x7000 0x7F	FF - 32 k	oit float Re	gister					
Name	Index	Zugriffs- modus	Min/Max-Wert Datentyp	Bemerkung				
Zeitstempel Low-Word	0x7000	r/-	035999 FLOAT	10ms Stepps. Reset after 1 hour.				
Zeitstempel High-Word	0x7001]						
Prozessvalue Low-Word	0x7004	r/-	-20000100000	Field value of ADC				
Prozessvalue High-Word	0x7005	1	FLOAT					
Prozessvalue-Min Low-Word	0x7006	r/-	-20000100000	Process value				
Prozessvalue-Min High-Word	0x7007		FLOAT					
Prozessvalue-Max Low-Word	0x7008	r/-	-20000100000	Minimum value				
Prozessvalue-Max High-Word	0x7009		FLOAT					
Prozessvalue-Tot Low-Word	0x700A	r/-	-20000100000	Maximum value				
Prozessvalue-Tot High-Word	0x700B		FLOAT					
Prozessvalue-Hld Low-Word	0x700C	r/-	-20000100000	Totalizer (displayed value)				
Prozessvalue-Hld High-Word	0x700D		FLOAT					
Prozessvalue-Avg Low-Word	0x700E	r/-	-20000100000	Hold value				
Prozessvalue-Avg High-Word	0x700F		FLOAT					
Prozessvalue-Abs Low-Word	0x7010	r/-	-20000100000	Average value				
Prozessvalue-Abs High-Word	0x7011		FLOAT					
Prozessvalue-Nom Low-Word	0x6012	r/-	-20000100000	Absolute value				
Prozessvalue-Nom High-Word	0x6013		FLOAT					
Prozessvalue-Diff Low-Word	0x6014	r/-	-20000100000	Nominal value, Set value				
Prozessvalue-Diff High-Word	0x6015		FLOAT					
		-						

Protocol

Standard form of message:

MODBUS-RTU

Device address	Function	Data	CRC
1 Byte	1Byte	n Bytes	2 Bytes

MODBUS-ASCII

	Start	Device address	Function	Data	LRC-Wert	Ende
Γ	12	2 Zeichen	2 Zeichen	n x 2 Zeichen	2 Zeichen	'\r\n'

Note: In ASCII mode, we presented one byte with two characters in hexadecimal code ('00 .. FF ').

Massage Format:

Function 0x03 (Register read) - Requirements

Adresse	Funktion	Daten				Check sum		
		Start address	3	Count of regi	isters			
		High-Byte	Low-Byte	High-Byte	Low-Byte	Low-Byte	High-Byte	
0xnn	0x03	0xnn	0xnn	0xnn	0xnn	0xnn	0xnn	

Function 0x03 (Register read) - Reply

Adresse	Funktion	Daten			Check sum				
		Count of	Registe	er n + 0	 Registe	ern+X		anning Company	
		bytes nn = count register x 2	High- Byte	Low- Byte	 High- Byte	Low- Byte	Low-Byte	High-Byte	
0xnn	0x03	0xnn	0xnn	0xnn	 0xnn	0xnn	0xnn	0xnn	

Function 0x10 (Register write) - Requirements

Adresse		Data										Check sum			
	tion	Start a	ddress	Count registe		Anzahl Bytes =	Bytes =			Register n + X					
		High- Byte	Low- Byte	High- Byte	Low- Byte	Anzahl Register x 2	High- Byte	Low- Byte		High- Byte	Low- Byte	Low- Byte	High- Byte		
0xnn	0x10	0xnn	0xnn	0xnn	0xnn	0xnn	0xnn	0xnn		0xnn	0xnn	0xnn	0xnn		

Function 0x10 (Register write) - Reply

runction ox it) (Register wi						
Adresse	Funktion	Data		Check sum			
		Start address	3	Count of regi	sters		
	High-Byte Low-By				Low-Byte	Low-Byte	High-Byte
0xnn	0x10	0xnn	0xnn	0xnn	0xnn	0xnn	0xnn

page 52 DAG-M4F K08/0623

Examples

Read a 32-Bit value

MODBUS Device address 1, Index 0x6004, Register count 2, Reply value 93350 (0x00016CA6)

Telegram: MODBUS-RTU

Anforderung (Request)

	Adresse	Funktion	Data				Check sum				
			Start address	S	Count of regi	sters					
			High-Byte	Low-Byte	High-Byte	Low-Byte	Low-Byte	High-Byte			
	0x01 0x03 0x6			0x04	0x00	0x02	0xnn	0xnn			

Antwort (Response)

Adresse	Function	Data			Check sun	1		
		Count	Low-Word	i	High-Wor	d		
		bytes	High-Byte	Low-Byte	High-Byte	Low-Byte	Low-Byte	High-Byte
0x01	0x03	0x04	0x6C	0xA6	0x00	0x01	0xnn	0xnn

Telegram: MODBUS-ASCII

Request

Start	Functi	on	Data								Check	sum	End	
			Start ad	dress	Count of registers									
	High-Byte			te	Low-Byt	e	High-By	te	Low-Byt	te				
12	':' '0' '3' '6' '0'			'0'	'0'	'4'	'0'	'0'	'0'	'2'	'n'	'n'	CR	LF
0x3A	0x3A 0x30 0x33 0x36 0x30				0x30	0x30	0x30	0x30	0x30	0x32	0xnn	0xnn	0x0D	0x0A

Response

Star	t F	unctio	on	Data										Check	sum	End	
				Anzah	I	Low-Word					High-Word						
			Bytes				High-Byte Low-Byte			High-Byte Low-Byte			yte				
1:		0' 3' 0' 4'		'4'	'6'	'C'	'A'	'6'	'0'	'0'	'0'	'1'	'n'	'n'	CR	LF	
0x3	BA (0x30 0x33 0x30 0x34			0x34	0x36	0x43	0x41	0x36	0x30	0x30	0x30	0x31	0xnn	0xnn	0x0D	0x0A

Write a 32-Bit Wertes

MODBUS Device address 1, Register index 0x6004, Count of registers 2, value 91696 (0x00016630)

Protokoll: MODBUS-RTU

Request

	Address	Address Func- Data								Check sum			
tion		Startad	resse	Anzahl Registe		Count Bytes	Low-W	ord	High-W	ord			
			High- Byte	Low- Byte	High- Byte	Low- Byte		High- Byte	Low- Byte	High- Byte	Low- Byte	Low- Byte	High- Byte
	0x01	0x10	0x60	0x04	0x00	0x02	0x04	0x66	0x30	0x00	0x01	0xnn	0xnn

Response

Ad	dress	Func-	Data	Check	sum			
		tion	Start address		Count of registers			
			High-Byte	Low-Byte	High-Byte	Low-Byte	Low- Byte	High- Byte
0)x01	0x10	0x60	0x02	0x00	0x02	0xnn	0xnn

Note: Note that the Modicon compatible mode, with the 16-bit value of the register address (index), number of registers and register contents, always the high byte is first passported. In contrast, the low word is transmitted first with 32-bit values. This is handled for the FLOAT data type as.

page 54 DAG-M4F K08/0623

Error codes

Modbus – The Modbus protocol provides for the transmission of error code in some cases.

Fehlercode Beschreibung			
0x01 Error code is not supported			
0x02	Register address or index is not supported		
0x03 Data error			
0x04 General device error			

If the checksum is faulty, the device sends no response to the request. This behavior is to generate a timeout on the opposite side. $\frac{1}{2} \int_{\mathbb{R}^{n}} \frac{1}{2} \left(\frac{1}{2} \int_{\mathbb{R}^{n}} \frac$

Response

Address	Function	Error Number	Check sum	
			Low-Byte	High-Byte
0x01	0x83	0x04	0xnn	0xnn

An error is indicated by a set bit 7 in the function code in the response.

Device diagnostics

Diagnostic functions

Sub function	Data	Comment			
0x0000	0x0000	Echo connection test			
0x0001	0x0000	Start device initialization			
	0x0001	Reset device			
0x0002	0x0000	Request diagnostic register (see below)			
0x000A	0x0000	Reset all diagnostic registers			
0x000B 0x0000		Request count of communications			
0x000C 0x0000 I		Request count of check sum errors			
0x000D		Request count of request errors			
0x000E 0x0000		Request the total count of request messages			
0x000F 0x0000 Request the count of broadca		Request the count of broadcast request messages			
0x0010 0x0000 like 0x000D		like 0x000D			
0x0012 0x0000 Request count of check sum overruns		Request count of check sum overruns			
0x0014 0x0000 Reset count of check sum overruns		Reset count of check sum overruns			

Request / Antwort Response - Diagnostic functions

Address Function Data						Check sum		
		Sub function		Data				
		High-Byte	Low-Byte	High-Byte	Low-Byte	Low-Byte	High-Byte	
0x01	0x08	0x00	0x00	0x00	0x00	0xnn	0xnn	

Diagnostic register

Bit number	Comment				
0	Time out during data request message				
1	Measure range overrun				
2 15	Reserved				

Note: The bits in the Diagnostic register remain set until they are by sending the subfunction 0x000A reset.

page 56 DAG-M4F K08/0623